DOI QR코드

DOI QR Code

Impact of Fin Aspect Ratio on Short-Channel Control and Drivability of Multiple-Gate SOI MOSFET's

  • 발행 : 2008.12.30

초록

This paper puts forward an advanced consideration on the design of scaled multiple-gate FET (MuGFET); the aspect ratio ($R_{h/w}$) of the fin height (h) to fin width (w) of MuGFET is considered with the aid of 3-D device simulations. Since any change in the aspect ratio must consider the trade-off between drivability and short-channel effects, it is shown that optimization of the aspect ratio is essential in designing MuGFET's. It is clearly seen that the triple-gate (TG) FET is superior to the conventional FinFET from the viewpoints of drivability and short-channel effects as was to be expected. It can be concluded that the guideline of w < L/3, where L is the channel length, is essential to suppress the short-channel effects of TG-FET.

키워드

참고문헌

  1. T. Skotnicki, A. Hutchby, T.-J. King, H.-S. Philip Wong, and F. Boeuf, "The End of CMOS Scaling," IEEE Circuits & Devices Magazine, Vol. 21, p.16-26, Jan./Feb., 2005 https://doi.org/10.1109/MCD.2005.1388765
  2. D. Hisamoto, W. Lee, J. Kedzierski, E. Anderson, H. Takeuchi, K. Asano, T. King, J. Bokor, and C. Hu, "A Folded-Channel MOSFET for Deep-Sub-tenth Micron Era," in IEEE IEDM Tech. Dig.,(San Francisco) p. 1032-1034, 1998
  3. B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavaieros, T. Linton, R. Rios, and R. Chau, "Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout", in Int. Symp. VLS. Tech. Dig.(Kyoto) p. 133-134, 2003
  4. Y. Liu, K. Ishii, M. Masahara, T. Tsutsumi, H. Takashima, and E. Suzuki, "An Experimental Study of the Cross-Sectional Channel Shape Dependence of Short-Channel Effects in Fin-Type Double-Gate MOSFETs," Ext. Abstr., 2003 Int. Conf. Solid State Devices and Mat. (Tokyo) pp.284-285, 2003
  5. J. G. Fossum, J. Yang, and V. Trivedi, "Suppression of Corner Effects in Triple-Gate MOSFETs" IEEE Electron Dev. Lett., Vol. 24, p. 745-747, 2003 https://doi.org/10.1109/LED.2003.820624
  6. J. G. Fossum, L. Wang, J. Yang, S. Kim, and V. Trivedi, "Pragmatic Design of Nanoscale Multi-Gate CMOS", in IEEE IEDM Tech. Dig. (San Francisco) pp. 613-616, 2004
  7. K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, "Scaling Theory for Double-Gate SOI MOSFET's," IEEE Trans. Electron Devices, Vol. 40, pp. 2326-2329, 1993 https://doi.org/10.1109/16.249482
  8. Y. Tosaka, K. Suzuki, and T. Sugii, "Scaling-Parameter- Dependent Model for Subthreshold Swing S in Double-Gate SOI MOSFET's," IEEE Electron Device Lett., Vol. 15, pp. 466-468, 1994 https://doi.org/10.1109/55.334669
  9. D. J. Frank, Y. Taur, and Hon-Sum P. Wong, "Generalized Scale Length for Two-Dimensional Effects in MOSFET's," IEEE Electron Devices Lett., Vol. 19, pp. 385-387, 1998 https://doi.org/10.1109/55.720194
  10. J.-W. Yang, and J. G. Fossum, "On the Feasibility of nanoscale Triple-Gate CMOS Transistors," IEEE Trans. Electron Devices, Vol. 52, pp. 1159-1164, 2005 https://doi.org/10.1109/TED.2005.848109
  11. TCAD DESSIS/GENESISe, ver. 8.0 Operations Man. (Synopsis Corp.)
  12. Y. Omura, H. Konishi, and S. Sato, "Quantum-Mechanical Suppression and Enhancement of Short-Channel Effects in Ultra-Thin SOI MOSFET's," IEEE Trans. Electron Devices., Vol. 53, pp. 677-684, 2006 https://doi.org/10.1109/TED.2006.870274
  13. T. Sanda, H. Konishi, and Y. Omura, "Empirical Model of Effective Channel Width Including Three-Dimensional Effects of SOI FinFET," Abstract og 2006 Int. Meeting for Future of Electron Devices, Kansai (IMFEDK) (April, Kyoto) pp. 57-58
  14. A. Dixt, K. G. Anil, N. Collaert, R. Rooyackers, F. Leys, I. Ferain, A. DeKeersgieter, T. Y. Hoffman, R. Loo, M. Goodwin, P. Zimmerman, M. Caymax, K. De Meyer, M. Jurczak, and S. Biesemans, "Parasitic Source/Drain Resistance Reduction in N-channel SOI MuGFETs with 15 nm Wide Fin," Proc. 2005 IEEE Int. SOI Conf. (Hawaii, 2005) pp. 226-228
  15. H. Konishi, and Y. Omura, "Robust Engineering of S/D Diffusion Doping and Metal Contact Layouts for Multi-Fin Triple-Gate FETs," IEEE Electron Devices Lett., vol. 27, pp. 472-475, 2006 https://doi.org/10.1109/LED.2006.873764
  16. G. Masetti, M. Severi, and S. Solmi, "Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon," IEEE Trans. Electron Devices, vol. ED-30, pp. 764-769, 1983
  17. C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, "A physically based mobility model for numerical simulation of nonplanar devices," IEEE Trans. Computer-Aided Design, vol. 7, pp. 1164-1171, Nov. 1988 https://doi.org/10.1109/43.9186
  18. C. Canali, G. Majini, R. Minder, and G. Ottaviani, "Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature," IEEE Trans. Electron Devices, Vol. ED-22, pp. 1045-1047, 1975
  19. H. Nakajima, S. Yanagi, K. Komiya, and Y. Omura, "Off-leakage and drive current characteristics of sub-100-nm SOI MOSFETs and impact of quantum tunnel current," IEEE Trans. Electron Devices, Vol. 49, pp. 1775-1782, 2002 https://doi.org/10.1109/TED.2002.803635
  20. Y. Omura, T. Ishiyama, M. Shoji, and K. Izumi, "Quantum Mechanical Transport Characteristics in Ultimately Miniaturized MOSFETs/SIMOX," in Proc. Int. Symp. Silicon-on-Insulator Tech. Dev. (ECS, Massachusetts) PV-96-3, p. 199-211, 1996
  21. Y. Omura, H. Konishi, and S. Sato, "Quantum-Mechanical Suppression and Enhancement of Short-Channel Effects in Ultra-Thin SOI MOSFET's," IEEE Trans. Electron Devices., Vol. 53, pp. 677-684, 2006 https://doi.org/10.1109/TED.2006.870274
  22. K. Endo, M. Masahara, Y. Liu, T. Matsukawa, K. Ishii, E. Sugimata, H. Takashima, H. Yamauchi, and E. Suzuki, "Investigation of N-Channel Triple-Gate MOSFETs on (100) SOI Substrate," Ext. Abstr., 2005 Int. Conf. Solid State Devices and Mat. (Kobe) pp. 276-277, 2005
  23. M. Masahara, K. Endo, Y.-X. Liu, T. Matsukawa, S. Ouchi, K. Ishii, H. Takashima, E. Sugimata, and E. Suzuki, "Investigation of Accumulation-mode Vertical Double-gate MOSFET," Ext. Abstr., 2005 Int. Conf. Solid State Devices and Mat. (Kobe) pp. 586-587, 2005
  24. Samudra, and Rajendran, "Scaling Parameter Dependent Drain Induced Barrier Lowering Effect in Double-Gate Silicon-on-Insulator Metal-Oxide-Semiconductor Field Effect Transistor", Jpn. J. Appl. Phys., vol. 38, p. 349-352, 1999 https://doi.org/10.1143/JJAP.38.L349
  25. L. T. Su, M. J. Sherony, H. Hu, J. E. Chung, and D. A. Antoniadis, "Optimization of Series Resistance in Sub-0.2 mm SOI MOSFETs," Tech. Dig., 1993 IEEE Int. Electron Devices Meet. (Washington, D. C., Dec. 1993) p. 723-726
  26. K. Yoshimoto, Y. Omura, and H. Wakabayashi, "Impact of Metal Silicide Layout Covering Source/Drain Diffusions on Parasitic Resistance of Triple-Gate SOI MOSFET," ECS Trans. Vol. 6, No. 4, Silicon-on-Insulator Technol. and Dev. 13, pp. 27-32, 2007

피인용 문헌

  1. Gate-Field Engineering and Source/Drain Diffusion Engineering for High-Performance Si Wire GAA MOSFET and Low-Power Strategy in Sub-30-nm-Channel Regime vol.10, pp.4, 2011, https://doi.org/10.1109/TNANO.2010.2071396
  2. Design Feasibility of High-Performance Si Wire Gate-All-Around Metal–Oxide–Semiconductor Field-Effect Transistor in Sub-30-nm-Channel Regime vol.50, pp.1347-4065, 2011, https://doi.org/10.1143/JJAP.50.014201
  3. Design Feasibility of High-Performance Si Wire Gate-All-Around Metal–Oxide–Semiconductor Field-Effect Transistor in Sub-30-nm-Channel Regime vol.50, pp.1R, 2013, https://doi.org/10.7567/JJAP.50.014201
  4. Design of Poly-Si Junctionless Fin-Channel FET With Quantum-Mechanical Drift-Diffusion Models for Sub-10-nm Technology Nodes vol.63, pp.12, 2016, https://doi.org/10.1109/TED.2016.2614990
  5. 2-D Analytical Modeling of Surface Potential and Threshold Voltage for Vertical Super-Thin Body FET vol.64, pp.5, 2017, https://doi.org/10.1109/TED.2017.2687465
  6. Design and Analysis of Sub-10 nm Junctionless Fin-Shaped Field-Effect Transistors vol.14, pp.5, 2014, https://doi.org/10.5573/JSTS.2014.14.5.508
  7. Fraction of Insertion of the Channel Fin as Performance Booster in Strain-Engineered p-FinFET Devices With Insulator-on-Silicon Substrate vol.65, pp.2, 2018, https://doi.org/10.1109/TED.2017.2781264