Analysis of Spin Valve Tunneling Magnetoresistance Sensor for Eddy Current Nondestructive Testing

  • 발행 : 2008.12.30

초록

The spin valve tunneling magnetoresistance (SV-TMR) sensor performance is analyzed using Stoner-Wohlfarth model for the detection of eddy current signals in nondestructive testing applications. The SV-TMR response in terms of the applied AC magnetic field dominantly generates the second harmonic amplitude in hard axis direction. The second harmonic eddy current signal detection using SV-TMR sensor shows higher performance than that of the coil sensor at lower frequencies. The SV-TMR sensor with high sensitivity gives a good solution to improve the low frequency performance in comparison with the inductive coil sensors. Therefore, the low frequency eddy current techniques based on SV-TMR sensors are specially useful in the detection of hidden defects, and it can be applied to detect the deeply embedded flaws or discontinuities in the conductive materials.

키워드

참고문헌

  1. Baibich, M. N., Broto, J. M., Fert, A., Nguyen, F. and Petroll, F. (1988) Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Super-Lattices, Phys. Rev. Lett., Vol. 61 p. 2472 https://doi.org/10.1103/PhysRevLett.61.2472
  2. Binasch, G., Grunberg, P., Saurenbach, F. and Zinn, W. (1989) Enhanced Magnetoresistance in Layered Magnetic Structure with Antiferromagnetic Interlayer Exchange, Phys. Rev. B, Vol. 39 p. 2489
  3. Cavoit, C. (2006) Closed Loop Applied to Magnetic Measurements in the Range of 0.1- 50 MHz., Rev. Sci. Instrum., Vol. 77, pp. 064703(1-7) https://doi.org/10.1063/1.2214693
  4. Dogaru, T. and Smith, S. T. (2001) Giant Magnetoresistance Based Eddy Current Sensor, IEEE Trans. Magn., Vol. 37, No. 4, pp. 2790-2793 https://doi.org/10.1109/20.951308
  5. Dogaru, T., Smith, C. H., Schneider, R. W. and Smith, S. T. (2001) New Directions in Eddy Current Sensing, Sensors, Vol. 18, p. 58
  6. Dogaru, T. and Smith, S. T. (2000) Edge Crack Detection Using a Giant Magnetoresistance Based Eddy Current Sensor, Nondestructive Testing and Evaluation, Vol. 16, p. 53
  7. Fermon, C., Pannetier, L. M., Biziere, N. and Cousin, B. (2006) Optimized GMR Sensors for Low and High Frequencies Applications, Sensors and Actuators A: Physical, Vol. 129, pp. 203-206 Gilles-Pascaud, C., Decitre, J. M., Vacher, F., Fermon, C., Pannetier, M. and Cattiaux, G. (2005) Eddy Current Flexible Probes for Complex Geometries, QNDE2005 Workshop Proceedings, Vol. 25A, p 399
  8. Kim, D. Y., Kim, C. G., Kim, C. O., Tsunoda, M. and Takahashi, M. (2006) Effect of Surface Roughness and Field Annealing on Interlayer Coupling in MnIr-based Magnetic Tunnel Junction., J. Magn. Magn. Mater., Vol. 304, pp. e267-e269 https://doi.org/10.1016/j.jmmm.2006.01.128
  9. Parkin, S. S., Kaiser, C., Panchula, A., Rice, P. M., Hughes, B., Samant, M. and Yang, S. H. (2004) Giant Tunnelling Magnetoresistance at Room Temperature with MgO (100) Tunnel Barries., Nature Mat., Vol. 3 pp. 862-867 https://doi.org/10.1038/nmat1256
  10. Thomson, W. (1857) On the Electrodynamic Qualities of Metals: Effects of Magnetization on the Electric Conductivity of Nickel and Iron, Proc. Rpy. Soc. London, Vol. 8, pp. 547-550
  11. www.geocities.com/raobpc/EC-Def.html
  12. Wincheski, B. and Namkung, M. (2000) Deep Flaw Detection with Giant Magnetoresistive (GMR) Based Self-Nulling Probe, QNDE 1999, AIP Conference Proceedings, Vol. 509, pp. 465-472
  13. Xi, H., Kryder, M. H. and White, R. M. (1999) Study of the Angular Dependent Exchange Coupling between a F and AF Layers., Appl. Phys. Lett., Vol. 74, p. 2687 https://doi.org/10.1063/1.123937
  14. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. and Ando, K. (2004) Giant Room Temperature Magnetoresistance in Single Crystal Fe/MgO/Fe Magnetic Tunnel Barriers., Nature Mat., Vol. 3 pp. 868-871 https://doi.org/10.1038/nmat1257