Browse > Article

Analysis of Spin Valve Tunneling Magnetoresistance Sensor for Eddy Current Nondestructive Testing  

Kim, Dong-Young (Department of Physics, Andong National University)
Yoon, Seok-Soo (Department of Physics, Andong National University)
Lee, Sang-Hun (Department of Radiological Science, Kaya University)
Publication Information
Abstract
The spin valve tunneling magnetoresistance (SV-TMR) sensor performance is analyzed using Stoner-Wohlfarth model for the detection of eddy current signals in nondestructive testing applications. The SV-TMR response in terms of the applied AC magnetic field dominantly generates the second harmonic amplitude in hard axis direction. The second harmonic eddy current signal detection using SV-TMR sensor shows higher performance than that of the coil sensor at lower frequencies. The SV-TMR sensor with high sensitivity gives a good solution to improve the low frequency performance in comparison with the inductive coil sensors. Therefore, the low frequency eddy current techniques based on SV-TMR sensors are specially useful in the detection of hidden defects, and it can be applied to detect the deeply embedded flaws or discontinuities in the conductive materials.
Keywords
Eddy Current; Magnetoresistance; Nondestructive Testing; Harmonics; Flaw Detection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Binasch, G., Grunberg, P., Saurenbach, F. and Zinn, W. (1989) Enhanced Magnetoresistance in Layered Magnetic Structure with Antiferromagnetic Interlayer Exchange, Phys. Rev. B, Vol. 39 p. 2489
2 Cavoit, C. (2006) Closed Loop Applied to Magnetic Measurements in the Range of 0.1- 50 MHz., Rev. Sci. Instrum., Vol. 77, pp. 064703(1-7)   DOI   ScienceOn
3 Dogaru, T. and Smith, S. T. (2001) Giant Magnetoresistance Based Eddy Current Sensor, IEEE Trans. Magn., Vol. 37, No. 4, pp. 2790-2793   DOI   ScienceOn
4 Dogaru, T. and Smith, S. T. (2000) Edge Crack Detection Using a Giant Magnetoresistance Based Eddy Current Sensor, Nondestructive Testing and Evaluation, Vol. 16, p. 53
5 www.geocities.com/raobpc/EC-Def.html
6 Wincheski, B. and Namkung, M. (2000) Deep Flaw Detection with Giant Magnetoresistive (GMR) Based Self-Nulling Probe, QNDE 1999, AIP Conference Proceedings, Vol. 509, pp. 465-472
7 Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. and Ando, K. (2004) Giant Room Temperature Magnetoresistance in Single Crystal Fe/MgO/Fe Magnetic Tunnel Barriers., Nature Mat., Vol. 3 pp. 868-871   DOI   ScienceOn
8 Xi, H., Kryder, M. H. and White, R. M. (1999) Study of the Angular Dependent Exchange Coupling between a F and AF Layers., Appl. Phys. Lett., Vol. 74, p. 2687   DOI   ScienceOn
9 Fermon, C., Pannetier, L. M., Biziere, N. and Cousin, B. (2006) Optimized GMR Sensors for Low and High Frequencies Applications, Sensors and Actuators A: Physical, Vol. 129, pp. 203-206 Gilles-Pascaud, C., Decitre, J. M., Vacher, F., Fermon, C., Pannetier, M. and Cattiaux, G. (2005) Eddy Current Flexible Probes for Complex Geometries, QNDE2005 Workshop Proceedings, Vol. 25A, p 399
10 Kim, D. Y., Kim, C. G., Kim, C. O., Tsunoda, M. and Takahashi, M. (2006) Effect of Surface Roughness and Field Annealing on Interlayer Coupling in MnIr-based Magnetic Tunnel Junction., J. Magn. Magn. Mater., Vol. 304, pp. e267-e269   DOI   ScienceOn
11 Baibich, M. N., Broto, J. M., Fert, A., Nguyen, F. and Petroll, F. (1988) Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Super-Lattices, Phys. Rev. Lett., Vol. 61 p. 2472   DOI   ScienceOn
12 Parkin, S. S., Kaiser, C., Panchula, A., Rice, P. M., Hughes, B., Samant, M. and Yang, S. H. (2004) Giant Tunnelling Magnetoresistance at Room Temperature with MgO (100) Tunnel Barries., Nature Mat., Vol. 3 pp. 862-867   DOI   ScienceOn
13 Thomson, W. (1857) On the Electrodynamic Qualities of Metals: Effects of Magnetization on the Electric Conductivity of Nickel and Iron, Proc. Rpy. Soc. London, Vol. 8, pp. 547-550
14 Dogaru, T., Smith, C. H., Schneider, R. W. and Smith, S. T. (2001) New Directions in Eddy Current Sensing, Sensors, Vol. 18, p. 58