DOI QR코드

DOI QR Code

Composition and Quantitative Analysis of Stilbenoids in Mulberry (Morus alba L.) Leaves and Fruits with DAD/UV HPLC

DAD/UV HPLC를 이용한 뽕잎과 오디(Morus alba L.)에 함유된 Stilbenoids 조성 및 함량 분석

  • Published : 2008.01.31

Abstract

This study was aimed to analyze the composition and to quantify the contents of stilbenoids in the leaves and fruits of Morus alba L. using high performance liquid chromatography with phodtodiode array detector and UV detector. Optimal wavelength for the detection of various stilbenoids such as resveratrol, piceatannol, rhapontigenin, astringin, pterostilbene, piceid, rhaponticin and vitisin A was screened by DAD detector and set to 308 nm. Seven kinds of stilbenoids except vitisin A were identified in fruits, while 5 kinds of stilbenoids in leaves. Total stilbenoids contents were $609.15{\pm}7.24$ mg/100 g d.w. in fruits and $188.57{\pm}1.70$ mg/100 g d.w in leaves. Stilbenoids contents in fruits were 3 times higher than those in leaves. Rhaponticin was the most profound stilbene, analyzed to $389.26{\pm}5.22$ mg/100 g d.w. (63.8% of total stilbenoids) in fruits and $99.17{\pm}2.79$ mg/100 g d.w. (52.5% of total stilbenoids) in leaves. Astringin and piceatannol were only detected in fruits and vitisin A was not detected. Contents of piceid and rhaponticin were higher than those of aglycone forms, rhapontigenin and resveratrol.

본 연구는 DAD/UV HPLC를 이용하여 뽕잎과 오디(Morus alba L.)에 함유되어 있는 stilbenoids의 조성과 함량을 분석하고자 수행되었다. 뽕잎과 오디추출물을 DAD를 이용하여 최대흡광파장을 탐색한 결과 308 nm로 나타났으며, stilbenoids 조성이 오디에는 resveratrol, piceatannol, rhapontigenin, astringin, pterostilbene, piceid, rhaponticin, 뽕잎에는 resveratrol, rhapontigenin, pterostilbene, piceid이 함유된 것으로 나타났다. 오디와 뽕잎의 총 stilbenoids 함량은 $609.15{\pm}7.24$ mg/100 g d.w.와 $188.57{\pm}1.70$ mg/100 g d.w.였으며, rhaponticin은 오디($389.26{\pm}5.22$ mg/100 g d.w.)와 뽕잎($99.17{\pm}2.79$ mg/100 g d.w.) 모두 가장 많은 함량이 함유되어 있었다. Astringin과 piceatannol은 오디에서만 검출되었으며 vitisin A는 모두 검출되지 않았다. Piceid와 rhaponticin은 이의 비배당체인 resveratrol과 rhapontigenin보다 과량 함유되어 있어 비배당체보다는 배당체의 함량이 높은 것으로 나타났다.

Keywords

References

  1. Machii H, Koyama A, Yamanouchi H. 2000. FAO Electronic Conference Mulberry For animal production. http://www.fao.org/livestock/agap/frg/mulberry
  2. Kim TY, Kwon YB. 1996. A study on the antidiabetic effect of mulberry fruits. Korean J Seri Sci 38: 100-107
  3. Kim SY, Park KJ, Lee WC. 1988. Antiinflammatory and antioxidative effects of Morus spp. fruit extract. Korean J Med Crop Sci 6: 204-209
  4. Park JC, Choi JS, Choi JW. 1995. Effects of the fractions from the leaves, fruits, stems and roots of Cudrania tricuspidata and flavonoids on lipid peroxidation. Korean J Pharmacogn 26: 377-384
  5. Kim HB, Kim SY, Ryu KS, Lee WC, Moon JY. 2001. Effect of methanol extract from mulberry fruit on the lipid metabolism and liver function in cholesterol-induced hyperlipidemia rats. Korean J Seri Sci 43: 104-108
  6. Oh H, Ko EK, Jun JY, Oh MH, Park SU, Kang KH, Lee HS, Kim YC. 2002. Hepatoprotective and free radical scavenging activities of prenylflavonoids, coumarin and stilbene from Morus alba. Planta Med 68: 932-934 https://doi.org/10.1055/s-2002-34930
  7. Kim HB, Yang SY, Lee YK. 1996. Effects of mulberry leaves on physical properties and chemical contents of mulberry leaf noddle. Korean J Seri Sci 38: 1-6
  8. Kim HB, Choung WY, Ryu KS. 1999. Sensory characteristics and blood glucose lowering effect of ice-cream containing mulberry leaf powder. Korean J Seri Sci 41: 129-134
  9. Park SW, Jung YS, Ko KC. 1997. Quantitative analysis of anthocyanins among mulberry cultivars and their pharmacologicalscreening. J Korean Soc Hort Sci 38: 722-724
  10. Kim HB. 2000. Sensory characteristics of mulberry fruit jam and wine. Korean J Seri Sci 42: 73-77
  11. Kim HB, Lee YW, Lee YJ, Moon JY. 2001. Physiological effects and sensory characteristics of mulberry fruit wine with Chongilpong. Korean J Seri Sci 43: 16-20
  12. Langcake P, Pryce RJ. 1977. A new class of phytoalexins from grapevines. Experientia 33: 151-152 https://doi.org/10.1007/BF02124034
  13. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. 2004. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24: 2783-2840
  14. Roupe KA, Remsberg CM, Yanez JA, Davies NM. 2006. Pharmacometrics of stilbenes: seguing towards the clinic. Current Clinical Pharmacology 1: 81-101 https://doi.org/10.2174/157488406775268246
  15. Babette M, Jürgen H, Dieter S, Ingrid K, Franz O. 1990. Phenolics of mycorrhizas and non-mycorrhizal roots of Norway spruce. Planta 182: 142-148
  16. de Villiers A, Vanhoenacker G, Majek P, Sandra P. 2004. Determination of anthocyanins in wine by direct injection liquid chromatography-diode array detection-mass spectrometry and classification of wines using discriminant analysis. J Chromatogr A 1054: 195-204 https://doi.org/10.1016/j.chroma.2004.07.087
  17. Ko SK, Lee SM, Whang WK. 1999. Anti-platelet aggregation activity on stilbene derivatives from Rheum undulatum. Arch Pharm Res 22: 401-403 https://doi.org/10.1007/BF02979065
  18. Matsuda H, Kageura T, Morikawa T, Toguchida I, Harima S, Yoshikawa M. 2000. Effects of stilbene constituents from rhubarb on nitric oxide production in lipopolysaccharideactivated macrophages. Bioorg Med Chem Lett 10: 323-327 https://doi.org/10.1016/S0960-894X(99)00702-7
  19. Kimura Y, Okuda H, Kubo M. 1995. Effects of stilbenes isolated from medicinal plants on arachidonate metabolism and degranulation in human polymorphonuclear leukocytes. J Ethnopharmacol 45: 131-139 https://doi.org/10.1016/0378-8741(94)01206-F
  20. Choi SZ, Lee SO, Jang KU, Chung SH, Park SH, Kang HC, Yang EY, Cho HJ, Lee KR. 2005. Antidiabetic stilbene and anthraquinone derivatives from Rheum undulatum. Arch Pharm Res 28: 1027-1030 https://doi.org/10.1007/BF02977396
  21. Oh SJ. 2001. Identification of antioxidative compounds isolated from Rheum undulatum L. MS Thesis. Kyunghee University, Seoul, Korea
  22. Lin LL, Lien CY, Cheng YC, Ku KL. 2007. An effective sample preparation approach for screening the anticancer compound piceatannol using HPLC coupled with UV and fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 853: 175-182 https://doi.org/10.1016/j.jchromb.2007.03.007
  23. Ferrer P, Asensi M, Segarra R, Ortega A, Benlloch M, Obrador E, Varea MT, Asensio G, Jordá L, Estrela JM. 2005. Association between pterostilbene and quercetin inhibits metastatic activity of B16 melanoma. Neoplasia 7:37-47. https://doi.org/10.1593/neo.04337
  24. Roberti M, Pizzirani D, Simoni D, Rondanin R, Baruchello R, Bonora C, Buscemi F, Grimaudo S, Tolomeo M. 2003. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J Med Chem 46:3546-3554 https://doi.org/10.1021/jm030785u
  25. Tolomeo M, Grimaudo S, Di Cristina A, Roberti M, Pizzirani D, Meli M, Dusonchet L, Gebbia N, Abbadessa V, Crosta L, Barucchello R, Grisolia G, Invidiata F, Simoni D. 2005. Pterostilbene and 3'-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int J Biochem Cell Biol 37:1709-1726 https://doi.org/10.1016/j.biocel.2005.03.004
  26. Manickam M, Ramanathan M, Jahromi MA, Chansouria JP, Ray AB. 1997. Antihyperglycemic activity of phenolics from Pterocarpus marsupium. J Nat Prod 60: 609-610 https://doi.org/10.1021/np9607013
  27. Stivala LA, Savio M, Carafoli F, Perucca P, Bianchi L, Maga G, Forti L, Pagnoni UM, Albini A, Prosperi E, Vannini V. 2001. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J Biol Chem 276: 22586-22594 https://doi.org/10.1074/jbc.M101846200

Cited by

  1. Simultaneous determination of five characteristic stilbene glycosides in root bark of Morus albus L. (Cortex Mori) using high-performance liquid chromatography vol.22, pp.3, 2011, https://doi.org/10.1002/pca.1270
  2. Studies on quality control of domestic Morus alba Linne vol.31, pp.3, 2016, https://doi.org/10.6116/kjh.2016.31.3.71.
  3. Isolation and Identification of Antioxidant Polyphenolic Compounds in Mulberry (Morus alba L.) Seeds vol.40, pp.4, 2011, https://doi.org/10.3746/jkfn.2011.40.4.517
  4. Regulation of stilbene biosynthesis in plants vol.246, pp.4, 2017, https://doi.org/10.1007/s00425-017-2730-8
  5. Comparison of Nutritional and Functional Constituents, and Physicochemical Characteristics of Mulberrys from Seven Different Morus alba L. Cultivars vol.39, pp.10, 2010, https://doi.org/10.3746/jkfn.2010.39.10.1467
  6. Analysis of Functional Constituents of Mulberries (Morus alba L.) Cultivated in a Greenhouse and Open Field during Maturation vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1588
  7. Evaluation of Biological Activity and Analysis of Functional Constituents from Different Parts of Mulberry (Morus alba L.) Tree vol.44, pp.6, 2015, https://doi.org/10.3746/jkfn.2015.44.6.823
  8. Extraction and Stabilization of Anthocyanin Pigments from Morus alba Fruits vol.57, pp.1, 2014, https://doi.org/10.3839/jabc.2014.005
  9. RAW 264.7 큰포식세포에서 상백피 및 상지 에탄올 추출물의 항염증 활성 비교 vol.49, pp.3, 2017, https://doi.org/10.9721/kjfst.2017.49.3.343
  10. High-throughput detection of antioxidants in mulberry fruit using correlations between high-resolution mass and activity profiles of chromatographic fractions vol.13, pp.None, 2008, https://doi.org/10.1186/s13007-017-0258-3
  11. Morus alba L. Plant: Bioactive Compounds and Potential as a Functional Food Ingredient vol.10, pp.3, 2008, https://doi.org/10.3390/foods10030689
  12. Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology vol.38, pp.7, 2021, https://doi.org/10.1039/d0np00030b