조임회전력이 임플랜트-지대주 나사 연결부의 안정성에 미치는 영향

Influence of Tightening Torque on Implant-Abutment Screw Joint Stability

  • 신현모 (부산대학교 치과대학 치과보철학교실) ;
  • 정창모 (부산대학교 치과대학 치과보철학교실) ;
  • 전영찬 (부산대학교 치과대학 치과보철학교실) ;
  • 윤미정 (부산대학교 치과대학 치과보철학교실) ;
  • 윤지훈 (오스템 임플랜트 연구소)
  • Shin, Hyon-Mo (Department of Dentistry, Graduate School, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Dentistry, Graduate School, Pusan National University) ;
  • Jeon, Yonung-Chan (Department of Dentistry, Graduate School, Pusan National University) ;
  • Yun, Mi-Jeong (Department of Dentistry, Graduate School, Pusan National University) ;
  • Yoon, Ji-Hoon (Osstem Implant Research Center)
  • 발행 : 2008.08.29

초록

연구목적: 임플랜트 치료에서 가장 흔히 발생하는 기계적 문제점 중 하나는 나사의 풀림이다. 지대주 나사에 조임회전력을 가하는 목적은 나사를 신장시켜, 신장된 나사의 인장력에 의한 지대주와 고정체간의 압축력을 통해 연결부의 안정성을 부여하는 데 있다. 조임 회전력의 결과로 나타나는 전하중의 크기는 다양한 요소에 의해 영향을 받기 때문에, 동일한 조임회전력을 적용하였다 할지라도 임플랜트 시스템의 종류에 따라 전하중의 크기가 달라질 수 있다. 따라서 지대주 나사 연결부의 안정성을 위한 다양한 임플랜트 시스템의 적정 조임회전력 크기에 관한 연구가 필요하다. 본 연구에서는 external butt joint와 두 가지 internal cone 연결형태를 갖는 임플랜트 시스템들에서 지대주 나사의 조임회전력이 임플랜트-지대주 나사 연결부의 안정성에 미치는 영향을 하중 전후의 풀림회전력 측정을 통해 알아보고자 하였다. 연구재료 및 방법: External butt joint 형태를 가지는 US II 시스템과 $8^{\circ}$ internal cone 연결형태의 SS II 및 $11^{\circ}$ internal cone 연결형태의 GS II 시스템에서 20 Ncm, 30 Ncm, 그리고 40 Ncm의 각기 다른 조임회전력을 적용한 후 초기 풀림회전력 및 상실률과 $10^5$회의 반복하중 후의 풀림회전력 및 상실률을 비교 분석하였다. 연구결과 및 결론: 1. 초기 풀림회전력과 하중 후 풀림회전력은 조임회전력의 크기가 증가할수록 크게 나타났다 (P < .05). 2. 초기 풀림회전력 상실률은 SS II 시스템에서는 조임회전력 크기에 따른 차이가 없었으나 (P > .05), GS II와 US II에서는 20 Ncm 보다 40Ncm의 조임회전력에서 더 낮게 나타났다 (P < .05). 3. 하중 후 풀림회전력 상실률은 세 시스템 모두 30 Ncm의 조임회전력을 가했을 때 가장 낮게 나타났다 (P < .05). 4. 하중 후 풀림회전력 상실률은 SS II, GS II, 그리고 US II 순으로 높아지는 경향을 보였다. 5. 초기 풀림회전력과 하중 후 풀림회전력 상실률 간에는 상관관계가 없었다 (P > .05). 이상의 결과로부터 임플랜트 시스템의 종류뿐만 아니라 조임회전력의 크기 또한 지대주 나사의 풀림회전력 상실에 영향을 준다는 것을 알 수 있다. 따라서 임플랜트-지대주 나사 연결부 안정성 유지를 위해서는 임플랜트 시스템마다 적정 조임회전력이 제시되어야 하고, 또한 임상에서 이를 준수하는 것이 매우 중요하다고 생각된다.

Statement of problem: Within the elastic limit of the screw, the greater the preload, the tighter and more secure the screw joint. However, additional tensile forces can incur plastic deformation of the abutment screw when functional loads are superimposed on preload stresses, and they can elicit the loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum preload that will maximize fatigue life and simultaneously offer a reasonable degree of protection against loosening. Another critical factor in addition to the applied torque which can affect the amount of preload is the joint connection type between implant and abutment. Purpose: The purpose of this study was to evaluate the influence of tightening torque on the implant-abutment screw joint stability. Material and methods: Respectively, three different amount of tightening torque (20, 30, and 40 Ncm) were applied to implant systems with three different joint connections, one external butt joint and two internal cones. The initial removal torque value and the postload (cyclic loading up to 100,000 cycles) removal torque value of the abutment screw were measured with digital torque gauge. Then rate of the initial and the postload removal torque loss were calculated for the comparison of the effect of tightening torques and joint connection types between implant and abutment on the joint stability. Results and conclusion: 1. Increase in tightening torque value resulted in significant increase in initial and postload removal torque value in all implant systems (P < .05). 2. Initial removal torque loss rates in SS II system were not significantly different when three different tightening torque values were applied (P > .05), however GS II and US II systems exhibited significantly lower loss rates with 40 Ncm torque value than with 20 Ncm (P < .05). 3. In all implant systems, postload removal torque loss rates were lowest when the torque value of 30 Ncm was applied (P < .05). 4. Postload removal torque loss rates tended to increase in order of SS II, GS II and US II system. 5. There was no correlation between initial removal torque value and postload removal torque loss rate (P > .05).

키워드

참고문헌

  1. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of edentulous jaw. Int J Oral Surg 1981;10:387-416 https://doi.org/10.1016/S0300-9785(81)80077-4
  2. Albrektsson T. A multicenter report on osseointegration oral implants. J Prosthet Dent 1988;60:75-84 https://doi.org/10.1016/0022-3913(88)90355-1
  3. Johansson G, Plamqvist S. Complications, supplementary treatment, and maintenance in edentulous arches with implant- supported fixed prostheses. Int J Prosthodont 1990;3:89-92
  4. Tolman DE, Laney WR. Tissue-integrated prosthesis complications. Int J Oral maxillofac implants 1992;7:477-84
  5. Carlson B, Carlsson GE. Prosthodontic complications in osseointegrated dental implant treatment. Int J Oral Maxillofac Implants 1994;9:90-4
  6. Hemmings KW, Schmitt A, Zarb GA. Complications and maintenance requirements for fixed prostheses and overdentures in the edentulous mandible: a 5-year report. Int J Oral Maxillofac Implants 1994;9:191-6
  7. Jemt T, Pattersson P. A 3-year follow-up study on single implant treatment. J Dent 1993;21:203-8 https://doi.org/10.1016/0300-5712(93)90127-C
  8. Jorneus L, Jemt T, Carlsson L. Loads and designs of screw joints for single crowns supported by osseointegrated implants. Int J Oral Maxillofac Implants 1992;7:353-9
  9. Misch CE. Principles for screw-retained prostheses. in: Misch CE. Contemporary implant dentistry. 2nd ed., Missouri: CV Mosby 1999:575-93
  10. Bickford JH. An Introduction to the Design and Behavior of Bolted Joints. New York Marcel Dekker 1995:515-64
  11. Sakaguchi RL, Sun T, Haack JE. External strain distribution on implant prosthetic components. J Dent Res 1994;73:232
  12. McGlumphy EA, Mendel DA, Holloway JA. Implant Screw Mechanics. Dent Clinics North Am 1998;42:71-89
  13. Rangert B, Jemt T, Jorneus L. Forces and moments on Branemark implants. Int J Oral Maxillofac Implants 1989;4:241-7
  14. Burguete RL, Johns RB, King T, Patterson EA. Tightening characteristics for screwed joints in osseointegrated dental implants. J Prosthet Dent 1994;71:592-9 https://doi.org/10.1016/0022-3913(94)90443-X
  15. Haack JE, Sakaguchi RL, Sun T, Coffey JP. Elongation and preload stress in dental implant abutment screws. Int J Oral Maxillofac Implants 1995;10:529-36
  16. Murat C., Kivan Ak a, Ergin Tonuk. Accuracy of a manual torque application device for morse-taper implants: a technical note Int J Oral Maxillofac Implants 2004;19:743-8
  17. Griffith HT. Suggested tightening torques for structural bolts. Fastener Technology/February 1087. In:Torque Tensioning: A Ten Part Compilation. Stow, OH:Fastener Technology, Jan-Dec 1087
  18. Lang L.A, Kang B, Wang RF, Lang BR. Finite element analysis to determine implant preload. J Prosthet Dent 2003;90:539-46 https://doi.org/10.1016/j.prosdent.2003.09.012
  19. Jaarda MJ, Razzoog ME, Gratton DG. Comparison of 'look-alike'implant prosthetic retaining screws. J Prosthodont. 1995;4:23-7 https://doi.org/10.1111/j.1532-849X.1995.tb00310.x
  20. Binon P, Franz, Brunski J, Gulbransen H. The role of screws in implant systems. Int J Oral Maxillofac Implants. 1994;9(supplement):48
  21. Gibb CH, Mahan PE, Mauderli A, Lundeen HC, Walsh EK, Limits of human bite strength. J Prosthet Dent 1986;56:226-9 https://doi.org/10.1016/0022-3913(86)90480-4
  22. Khraisat A, Stegaroiu A, Nomura S, Miyakawa O. Fatigue resistance of two implant/abutment joint designs. J Prosthet Dent 2002;88:604-10 https://doi.org/10.1067/mpr.2002.129384
  23. Tan KB, Nicholls JI. Implant-abutment screw joint preload of 7 hex-top abutment systems. Int J Oral Maxillofac Implants 2001;16:367-77
  24. Lazzara RJ. Criteria for implant selection: surgical and prosthetic consideration. Pract Perio Aesthet Dent 1994;6:55-62
  25. Binon P. Screw joints, components, and other intimate relationships. J Prosthet Dent 1994;72:625
  26. Cavazos E, Bell FA. Preventing loosening of implant abutment screws. J Prosthet Dent 1996:75;566-9 https://doi.org/10.1016/S0022-3913(96)90464-3
  27. Cibirka RM, Nelson SK, Lang BR, Rueggeberg FA. Examination of the implant-abutment interface after fatigue testing. J Prosthet Dent 2001;85:268-75 https://doi.org/10.1067/mpr.2001.114266
  28. Mengel R, Buns CE, Mengel C, Flores-de-Jacoby L. An in vitro study of the treatment of implant surfaces with different insturments. Int J Oral Maxillofac Implants 1998;13:91-6
  29. Helsingen A, Lyberg T. Comparative stress analysis and clinical performance studies of Branemark implants and related clones. Int J Oral Maxillofac Implants 1994;9:422-30
  30. Shigley JE, Mische CR. Standard Handbook of Machine Designs. New York; McGraw-Hill; 1986
  31. Cantwell A, Hobkirk JA, Preload loss in gold prosthesis-re-taining screws as a function of time. Int J Oral Maxillofac Implants 2004;19:124-32
  32. Siamos G, Winkler S, Boberick KG. The relationship between implant preload and screw loosening on implantsupported restorations. J Oral Implantol 2002;28:67-73 https://doi.org/10.1563/1548-1336(2002)028<0067:TRBIPA>2.3.CO;2
  33. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant- abutment connection : an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000;15:519-26
  34. Schwarz MS. Mechanical complications of dental implants. Clin Oral Implants Res 2000;11:156-8 https://doi.org/10.1034/j.1600-0501.2000.011S1156.x
  35. Binon PP. Implants and components: Entering the new millennium. Int J Oral Maxillofac Implants 2000;15:76-94
  36. Sakaguchi RL, Borgersen SE. Nonlinear contact analysis of preload in dental mplant screws. Int J Oral Maxillofac Implants 1995;10:295-302
  37. Patterson EA, Johns RB. Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants. Int J Oral Maxillofac Implants 1992;7:26-33
  38. Rangert B, Jemt T, Jorneus L. Forces and moments on Branemark implants. Int J Oral Maxillofac Implant 1989;4:241-7
  39. Balfour A, O'Brien GR. Comparative study of antirotational single tooth abutments. J Prosthet Dent 1995;73:36-43 https://doi.org/10.1016/S0022-3913(05)80270-7
  40. Norton MR. An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design. Clinical Oral Implants Research 1997;8:290-8 https://doi.org/10.1034/j.1600-0501.1997.080407.x
  41. Chee W, Felton DA, Johnson PF, Sullivan DY. Cemented versus screw-retained implant prostheses: which is better- Int J Oral Maxillofac Implants 1999;14:137-41
  42. Levine RA, Clem DS 3rd, Wilson TG Jr, Higginbottom F, Solnit G. Multicenter retrospective analysis of the ITI implant system used for single-tooth replacements: results of loading for 2 ro more years. Int J Oral Maxillofac Implants 1999;14:516-20
  43. Sutter F, Weber HP, Sorenson J, Belser U. The new restorative concept of the ITI dental implant system: Design and engineering. 1993;13:409-43
  44. Gratton DG, Aquilino SA, Stanford CM. Micromotion and dynamic fatigue properties of the dental implant-abutment interface. J Prosthet Dent 2001;85:47-52 https://doi.org/10.1067/mpr.2001.112796
  45. Faulkner MG, Wolfaardt JF, Chan A. Measuring abutment/ implant joint integrity with the Periotest instrument. Int J Oral Maxillofac Implant 1999;14:681-8
  46. Sin HC. About the coefficient of friction. J KSTLE 1986;4:29-41
  47. Choi JU, Jeong CM, Jeon YC, Lim JS, Jeong HC, Eom TG. Ifluence of tungsten carbide/carbon coating on the preload of implant abutment screws. J Kor Acad Prosthodont 2006;44:229-42
  48. ISO/DIS 14801 Dental implants - Dynamic continuous fatigue test, International Organization for Standardization, 2001