알칼리와 열처리에 의한 임플란트의 표면 특성 및 골유착 안정성에 관한 연구

Surface characteristics and stability of implants treated with alkali and heat

  • 송윤석 (단국대학교 치과대학 치과보철학교실) ;
  • 조인호 (단국대학교 치과대학 치과보철학교실)
  • Song, Yun-Seok (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Cho, In-Ho (Department of Prosthodontics, College of Dentistry, Dankook University)
  • 발행 : 2008.10.31

초록

생체 활성 재료는 생체 내에서 자가적으로 인회석 층 (apatite layer)을 형성하여, 골과의 생화학적 결합이 가능해야 한다. 알칼리와 열처리를 통하여 생체 활성 표면을 얻을 수 있는 것으로 보고되고 있다. 본 실험에서는 알칼리 및 열처리를 시행한 임플란트들의 안정성을 평가하고자 하였다. 실험군의 분류로 1군은 대조군인 선반 가공 임플란트군, 2, 3군은 $60^{\circ}C$, 5 M의 NaOH 용액에 24시간 처리한 후, 각각 대기 중 및 진공 상태 $600^{\circ}C$에서 1시간 동안 열처리하였다. 처리된 시편은 FESEM, XPS, TF-XRD 및 AFM을 이용하여 표면 특성을 관찰하고, 임플란트의 안정성을 위해 공진 주파수와 페리오테스트 및 역 토오크를 측정하고, 골유착 안정성에 관한 차이를 비교 분석하여 다음과 같은 결과를 얻었다. 1. 표면 특성: 알칼리 및 열처리를 시행한 2, 3군은 비슷한 양상의 거친 표면을 보여주었다. 알칼리 처리를 시행한 2군과 3군에서 1군과는 달리 높은 함량의 나트륨 이온이 검출되었으며, 결정구조 분석 결과 2군에서 예추석 (antase)과 금홍석 (rutile)이 혼재된 상태로 금홍석이 우세한 양상을 보여주었다. 2. 공진 주파수 분석: 군간 비교에서 12주에 2군이 1, 3군에 비해 통계적으로 유의하게 높은 측정치를 보였다. 주간 비교시, 1, 2군은 4주 이후에 유의한 증가를 보여주었고, 3군은 2주와 4주에서 각각 유의한 증가를 보여주었다 (P < .05). 3. 페리오테스트 분석: 주간 비교에서 1, 2군은 4주 이후에 유의하게 감소를, 3군은 2주와 4주에서 각각 유의한 감소를 보여주었다 (P< .05). 4. 역 토오크 분석: 군간 비교에서는 2, 4, 8주에서는 2군이 1, 3군에 비해 유의하게 높은 측정값을 보여주었다. 주간 비교에서는 1, 3군은 4주, 12주에서 유의한 증가를 보여주었고, 2군은 4주부터 유의한 증가를 보여주었다 (P < .05). 이상의 결과로 볼 때, 알칼리 및 대기 중 열처리를 통해서 적절한 결정 구조의 산화막을 가진 생체 활성화된 무정형의 나트륨 티탄산염 층을 얻을 수 있었고, 알칼리 및 진공 상태 열처리만으로도 나트륨이 함유된 생체 활성화된 표면을 얻을 수 있었다고 사료된다. 또한 이런 처리 과정으로 형성된 표면층들은 임플란트의 초기 골유착에 도움을 줄 수 있는 유용한 방법 중 하나라고 사료된다.

Statement of problem: Bioactive materials must have the ability to spontaneously form a bone like apatite layer on their surface and induce direct biochemical bonding to bone. A simple chemical treatment via alkali and heat has been revealed to induce bioactivity in titanium. Purpose: The purpose of this study was to evaluate the surface characteristics and stability of alkali and heat treated implants. Material and methods: Specimens were divided into three groups; group 1 was the control group with machined surface implants, groups 2 and 3 were treated with alkali solutions and heat treated in the atmosphere and vacuum conditions respectively. The surface characteristics were observed with FESEM, XPS, TF-XRD and AFM. Stability was evaluated with the resonance frequency analysis, periotest and removal torque values. One-way ANOVA and Duncan test were used for statistical analysis. Results: 1. Groups treated with alkali and heat showed similar characteristics. Groups 2 and 3 showed high compositions of Na ions on the surface with sub-micron sized pores compared to group 1. Group 2 showed mixed compositions of anatase and rutile with superior contents of rutile. 2. Resonance frequency analysis : The ISQ of group 2 showed significantly higher values than that of groups 1 and 3 at 12 weeks. The ISQ of groups 1 and 2 showed significant increase after 4 weeks, and the ISQ of group 3 increased significantly after 2 and 4 weeks respectively (P < .05). 3. Periotest: The PTV of groups 1 and 2 showed significant decrease after 4 weeks, and the PTV of group 3 showed significant decrease after 2 and 4 weeks respectively (P < .05). 4. Removal torque analysis: The removal torque value of group 2 was significantly higher than those of groups 1 and 3 at 2, 4 and 8 weeks. The removal torque values of groups 1 and 3 showed increase at 4 and 12 weeks, but the removal torque value of group 2 showed increase after 4 weeks (P < .05). Conclusion: An oxide layer with appropriate crystal structure and amorphous sodium titanate layer can be obtained on titanium implants through alkali and heat treatment in the atmosphere, and even alkali and heat treatment in vacuum conditions, provided a bioactive surface containing sodium. These surface layers can be considered to be effective for enhancement of osseointegration and reduction of healing period for implant treatment.

키워드

참고문헌

  1. Darvell BW, Samman N, Luk WK, Clark RK, Tideman H. Contamination of titanium castings by aluminum oxide blasting. J Dent 1995;23:319-22 https://doi.org/10.1016/0300-5712(94)00003-X
  2. Kim HM, Miyaji F, Kokubo T, Nakamura T. Effect of heat treatment on apatite forming ability induced by alkali treatment. J Mater Sci Mater Med 1997;8:341-7 https://doi.org/10.1023/A:1018524731409
  3. Kim HW, Kim HE, Salih V, Knowles JC. Sol-gel modified titanium with thin hydroxyapatite thin films and effect on osteoblast-like cell responses. J Biomed Mater Res 2005;74:294-305
  4. Kokubo T, Kim HM, Kawashita M, Nakamura T. Bioactive metals: preparation and properties. J Mater Sci Mater Med 2004;15:99-107 https://doi.org/10.1023/B:JMSM.0000011809.36275.0c
  5. Kokubo T, Miyaji F, Kim HM, Nakamura T. Spontaneous formation of bone like apatite layer on chemically treated titanium metals. J Am Ceram Soc 1996;79:1127-9 https://doi.org/10.1111/j.1151-2916.1996.tb08561.x
  6. Wang C, Wang M, Zhou X. Nucleation and growth of apatite on chenically treated titanium alloy: an electrochemical impedence spectroscopy study. Biomaterials 2003;24:3069-77 https://doi.org/10.1016/S0142-9612(03)00154-6
  7. Hench L. Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487-510 https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  8. Chosa N, Taira M, Saitoh S, Sato N, Araki Y. Characterization of apatite formed on alkaline-heat- treated Ti. J Dent Res 2004;83:465-9 https://doi.org/10.1177/154405910408300606
  9. Nishiguchi S, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T. The effect of heat treatment on bone bonding of alkali treated titanium. Biomaterials 1999;20:491-500 https://doi.org/10.1016/S0142-9612(98)90203-4
  10. Sul YT, Byon ES, Jeong Y. Biochemical measurements of calcium-incorporated oxidized implants in rabbit bone: effect of calcium surface chemistry of a novel implant. Clin Implant Dent Relat Res 2004;6:101-10 https://doi.org/10.1111/j.1708-8208.2004.tb00032.x
  11. Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 1995;29:1071-9 https://doi.org/10.1002/jbm.820290907
  12. Lim JB, Cho IH. A study on the surface characteristics and stability of implants treated with anodic oxidation and fluoride incorporation. Ph.D Thesis in 2005; College of Dentistry, Dankook University, Korea
  13. Ellingsen JE. Pre-treatment of titanium implants with fluoride improves their retention in bone. J Mater Sci Mater Med 1995;6:749-53 https://doi.org/10.1007/BF00134312
  14. Sul YT, Johansson CB, Albrektsson T. Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. Int J Prosthodont 2006;19:319-29
  15. Jonasova L, Muller FA, Helebrant A, Strnad J, Greil P. Hydroxyapatite formation on alkali-treated titanium with different content of Na+ in the surface layer. Biomaterials 2003;23:3095-101
  16. Maitz MF, Poon RW, Liu XY, Pham MT, Chu PK. Bioactivity of titanium following sodium plasma immersion ion implantation and deposition. Biomaterials 2005;26:5465-73 https://doi.org/10.1016/j.biomaterials.2005.02.006
  17. Yang B, Uchida M, Kim HM, Zhang X, Kokubo T. Preparation of bioactive metal via anodic oxidation treatment. Biomaterials 2004;25:1003-10 https://doi.org/10.1016/S0142-9612(03)00626-4
  18. Lim YJ. Effects of heat treatment on the surface characteristics of titanium for implant. 2004; College of Dentistry, Seoul National University, Ph. D thesis
  19. Kern T, Yang Y, Glover R, Ong JL. Effect of heat treated titanium surfaces on protein adsorption and osteoblast precursor cell initial attachment. Implant Dent 2005;14:70-6 https://doi.org/10.1097/01.id.0000154795.93155.ee
  20. Goransson A, Jansson E, Tengvall P, Wennerberg A. Bone formation after 4 weeks around blood-plasma-modified titanium implants with varying surface topographies: an in vivo study. Biomaterials 2003;24:197-205 https://doi.org/10.1016/S0142-9612(02)00277-6
  21. Sul YT, Johansson CB, Jeong Y, Roser K, Wennerberg A, Albrektsson T. Oxidized implants and their influence on the bone response. J Mater Sci Mater Med 2001;12:1025-31 https://doi.org/10.1023/A:1012837905910
  22. Sul YT, Johansson C, Wennerberg A, Cho LR, Chang BS, Albrektsson T. Optimal surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int J Oral Maxillofac Implants 2005;20:349-59
  23. Lausmaa J. Multi-technique surface characterization of oxide film of electropolished and anodically oxidized titanium. Appl Surface Sci 1990;45:189-200 https://doi.org/10.1016/0169-4332(90)90002-H
  24. Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T. Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res A 2003;64:164-70