The authors developed 28 needs assessment tools for integrated assessment centered on needs, which is the core element in care management for the elderly in home. Also, the authors collected the assessment data of 676 elderly persons in home from 120 centers under the Korea Association of Senior Welfare Centers by using the needs assessment tools, and finally developed needs extraction algorithm through decision tree analysis in data mining to identify their actual needs and provide social welfare service suitable for such needs. The needs extraction algorithm for 28 needs of the elderly in home are summarized in
. The Need No. 8 "Having need of help in going out" of the decision-making model, for example, was divided into 80.3% of asking for help and 11.4% not asking for help with Appeal No. 23 as a major variable. The need increased by 87.9% when the elderly appealed for help to go out and they had a caregiver but decreased by 47.4% when they had no caregiver. When the elderly asked for help in going out, they had a caregiver, and they needed complete help in cleaning, their need of help in going out was shown as 94.2%. However, seen from their answer that they needed complete help in bathing of ADL even if they did not ask for help in going out, it was found that the need of help in going out sharply increased from 11.4% to 80.0%. On the other hand, when they needed partial help or self-supported in bathing, the potential for them to be classified as asking for help in going out was shown to be low as 7.7%. In the said decision-making model, the number of cases for parent node and child node was designated as 50 and 25, respectively, with level 5 of the maximum tree depth as stopping rule. By this, it was shown that their decision-making was found to be effective as 182.13% for the need "Having need of help in going out". The algorithm presented in this study can be useful as systematic and scientific fundamental data in assessment of needs of the elderly in home.
본 연구자들은 재가노인의 사례관리 과정에서 가장 핵심적인 요소가 되는 욕구 중심의 통합적 사정을 위한 28개의 욕구가 포함된 사정도구를 개발하였으며, 그 후속 연구로 개발된 욕구사정도구를 활용해 전국 노인복지관 협회 산하 120개 기관의 재가 노인 676명의 사정 데이터를 수집하고 데이터마이닝의 의사결정 나무분석 기법을 활용하여 욕구에 적합한 사회복지 서비스를 제공하기 위한 욕구추출 알고리즘을 개발하였다. 본 연구를 통해 재가노인의 욕구 28개에 대한 욕구추출 알고리즘은 <표3>에 요약하였다. 욕구 8번 "외출 시 도움을 원한다."의 의사결정모형을 예로 들면, 호소 23번을 주요 변인으로 외부이동 도움을 요청할 경우 80.3%와 요청하지 않을 경우 11.4%로 구분되었다. 이용자가 외부 이동에 대한 호소가 있고, 수발자가 있는 경우 87.9%로 욕구가 증가하였지만, 수발자가 없는 이용자의 경우 47.4%로 감소하였다. 노인이 외부이동 지원에 대한 요청과 수발자가 있으며, 청소하기의 완전도움이 필요한 경우, 외부이동 도움에 대한 욕구는 94.2%로 나타났다. 그러나 이용자가 외부이동의 도움을 요청하지 않더라도, ADL의 목욕하기에 완전도움으로 응답한 경우 외출도움의 욕구는 11.4%에서 80.0%로 급격히 증가하는 것을 확인할 수 있다. 그러나 ADL 목욕하기의 기능이 부분도움 또는 완전자립의 경우 외출도움이 필요하다고 분류될 가능성은 7.7%로 낮게 나타났다. 위와 같은 의사결정모형은 최대 나무 깊이는 5수준을 정지규칙으로 하여, 부모마디와 자식마디의 사례 수를 각각 50과 25로 지정하였다. 이를 통해 "외출 시 도움을 원한다"라는 욕구의 경우 182.13%의 효과적인 의사결정을 하고 있다. 본 연구의 결과로 제시한 알고리즘은 재가노인의 욕구를 추출함에 있어서 체계적이고 과학적인 기초자료로 활용될 수 있다.