DOI QR코드

DOI QR Code

A Comparison of Gene Expression Profiles between Primary Human AML Cells and Therapy-related AML Cells

  • Kim, Young-Hun (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Kim, Hyung-Soo (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Hwang, Jun-Mo (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Lee, Jin-Seok (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Kim, Seong-Gon (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Park, So-Young (Environmental Toxico-Genomic&Proteomic Center, College of Medicine, Korea University) ;
  • Chang, Kyu-Tae (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Kil-Soo (Department of Veterinary Medicine, Kyungpook National University) ;
  • Ryoo, Zae-Young (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Lee, Sang-Gyu (School of Life Science and Biotechnology, Kyungpook National University)
  • Published : 2008.12.31

Abstract

To identify genes whose expression correlated with biological features of therapy-related AML (t-AML), we analyzed the expression profiles of de novo AML t(9;11) and t-AML t(9;11) bone marrow samples using previously published SAGE data. Three-hundred twenty-nine transcripts that satisfied statistical (P<0.05) and magnitude-of-change ($\geq$ 4-fold) criteria were identified as differentially expressed between de novo AML t(9;11) and t-AML t(9;11) cells. Of these transcripts, 301 (91%) matched known genes or ESTs and were classified according to functional categories (http://david.abcc.ncifcrf.gov/). The majority of differentially expressed genes in t-AML t(9;11) were involved in the regulation of biological and metabolic processes. Especially prominent among these were genes related to immune and drug responses. These results establish a framework for developing new drugs for the treatment of t-AML.

Keywords

References

  1. Ayroldi, E., Zollo, O., Bastianelli, A., Marchetti, C., Agostini, M., Di Virgilio, R. and Riccardi, C. (2007). GILZ mediates the antiproliferative activity of glucocorticoids by negative regulation of Ras signaling. J. Clin. Invest. 117, 1605-1615 https://doi.org/10.1172/JCI30724
  2. Bierer, B. E. and Burakoff, S. J. (1988). T cell adhesion molecules. FASEB J. 2, 2584-2590 https://doi.org/10.1096/fasebj.2.10.2838364
  3. Cuddeback, S. M., Yamaguchi, H., Komatsu, K., Miyashita, T., Yamada, M., Wu, C., Singh, S. and Wang, H. G. (2001). Molecular cloning and characterization of Bif-1. A novel Src homology 3 domain-containing protein that associates with Bax. J. Biol. Chem. 276, 20559-20565 https://doi.org/10.1074/jbc.M101527200
  4. Duan, H., Wang, Y., Aviram, M., Swaroop, M., Loo, J.A., Bian, J., Tian, Y., Mueller, T., Bisgaier, C. L. and Sun, Y. (1999). SAG, a novel zinc RING finger protein that protects cells from apoptosis induced by redox agents. Mol. Cell. Biol. 19, 3145-3155 https://doi.org/10.1128/MCB.19.4.3145
  5. Gerald, D., Berra, E., Frapart, Y. M., Chan, D. A., Giaccia, A. J., Mansuy, D., Pouyssegur, J., Yaniv, M. and Mechta-Grigoriou, F. (2004). JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118, 781-794 https://doi.org/10.1016/j.cell.2004.08.025
  6. Haferlach, T., Kohlmann, A., Schnittger, S., Dugas, M., Hiddemann, W., Kern, W. and Schoch, C. (2005). Global approach to the diagnosis of leukemia using gene expression profiling. Blood 106, 1189-1198 https://doi.org/10.1182/blood-2004-12-4938
  7. Harris, N. L., Jaffe, E. S., Diebold, J., Flandrin, G., Muller-Hermelink, H. K., Vardiman, J., Lister, T. A., Bloomfield, C. D. (2000). World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. Hematol. J. 1, 53-66 https://doi.org/10.1038/sj.thj.6200013
  8. Hatta, Y., Arima, N., Machino, T., Itoh, T., Hashimoto, S., Takeuchi, J., Sawada, U., Hayakawa, S., Yamamoto, T. and Horie, T. (2003). Mutational analysis of IkappaBalpha in hematologic malignancies. Int. J. Mol. Med. 11, 239-242
  9. Hemminki, K. and Kallama, S. (1986). Reactions of nitrogen mustards with DNA. IARC Sci. Publ. 55-70
  10. Jia, S. H., Li, Y., Parodo, J., Kapus, A., Fan, L., Rotstein, O. D. and Marshall, J .C. (2004). Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J. Clin. Invest. 113, 1318-1327 https://doi.org/10.1172/JCI19930
  11. Kantarjian, H. M., Keating, M. J., Walters, R. S., Smith, T. L., Cork, A., McCredie, K. B. and Freireich, E. J. (1986). Therapy-related leukemia and myelodysplastic syndrome: clinical, cytogenetic, and prognostic features. J. Clin. Oncol. 4, 1748-1757 https://doi.org/10.1200/JCO.1986.4.12.1748
  12. Lee, S., Chen, J., Zhou, G., Shi, R. Z., Bouffard, G. G., Kocherginsky, M., Ge, X., Sun, M., Jayathilaka, N., Kim, Y.C., Emmanuel, N., Bohlander, S. K., Minden, M., Kline, J., Ozer, O., Larson, R. A., LeBeau, M. M., Green, E. D., Trent, J., Karrison, T., Liu, P. P., Wang, S. M. and Rowley, J. D. (2006). Gene expression profiles in acute myeloid leukemia with common translocations using SAGE. Proc. Natl. Acad. Sci. USA. 103, 1030-1035 https://doi.org/10.1073/pnas.0509878103
  13. Licht, J. D. (2001). AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 20, 5660-5679 https://doi.org/10.1038/sj.onc.1204593
  14. Liu, C., Calogero, A., Ragona, G., Adamson, E. and Mercola, D. (1996). EGR-1, the reluctant suppression factor: EGR-1 is known to function in the regulation of growth, differentiation, and also has significant tumor suppressor activity and a mechanism involving the induction of TGF-beta1 is postulated to account for this suppressor activity. Crit. Rev. Oncog. 7, 101-125 https://doi.org/10.1615/CritRevOncog.v7.i1-2.70
  15. Liu, L. F. (1989). DNA topoisomerase poisons as antitumor drugs. Annu. Rev. Biochem. 58, 351-375 https://doi.org/10.1146/annurev.bi.58.070189.002031
  16. Murao, S., Stevens, F. J., Ito, A. and Huberman, E. (1988). Myeloperoxidase: a myeloid cell nuclear antigen with DNAbinding properties. Proc. Natl. Acad. Sci. USA. 85, 1232-1236 https://doi.org/10.1073/pnas.85.4.1232
  17. Pedersen-Bjergaard, J., Christiansen, D. H., Andersen, M. K. and Skovby, F. (2002). Causality of myelodysplasia and acute myeloid leukemia and their genetic abnormalities. Leukemia 16, 2177-2184 https://doi.org/10.1038/sj.leu.2402764
  18. Pedersen-Bjergaard, J., Philip, P., Larsen, S. O., Jensen, G. and Byrsting, K. (1990). Chromosome aberrations and prognostic factors in therapy-related myelodysplasia and acute nonlymphocytic leukemia. Blood 76, 1083-1091
  19. Povirk, L. F. and Shuker, D. E. (1994). DNA damage and mutagenesis induced by nitrogen mustards. Mutat. Res. 318, 205-226 https://doi.org/10.1016/0165-1110(94)90015-9
  20. Py, B., Slomianny, C., Auberger, P., Petit, P. X. and Benichou, S. (2004). Siva-1 and an alternative splice form lacking the death domain, Siva-2, similarly induce apoptosis in T lymphocytes via a caspase-dependent mitochondrial pathway. J. Immunol. 172, 4008-4017 https://doi.org/10.4049/jimmunol.172.7.4008
  21. Rohde, M., Daugaard, M., Jensen, M. H., Helin, K., Nylandsted, J. and Jaattela, M. (2005). Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes. Dev. 19, 570-582 https://doi.org/10.1101/gad.305405
  22. Rowley, J. D. (1999). The role of chromosome translocations in leukemogenesis. Semin. Hematol. 36, 59-72
  23. Schoch, C., Kern, W., Schnittger, S., Hiddemann, W. and Haferlach, T. (2004). Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia 18, 120-125 https://doi.org/10.1038/sj.leu.2403187
  24. Seedhouse, C. and Russell, N. (2007). Advances in the understanding of susceptibility to treatment-related acute myeloid leukaemia. Br. J. Haematol. 137, 513-529 https://doi.org/10.1111/j.1365-2141.2007.06613.x
  25. Srivastava, M. D., Anderson, D. J. (2007). Progesterone receptor expression by human leukocyte cell lines: molecular mechanisms of cytokine suppression. Clin. Exp. Obstet. Gynecol. 34, 14-24
  26. Valk, P. J., Verhaak, R. G., Beijen, M. A., Erpelinck, C. A., Barjesteh van Waalwijk van Doorn-Khosrovani, S., Boer, J.M., Beverloo, H. B., Moorhouse, M. J., van der Spek, P. J., Lowenberg, B. and Delwel, R. (2004). Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med. 350, 1617-1628 https://doi.org/10.1056/NEJMoa040465
  27. Zhang, D., Li, F., Weidner, D., Mnjoyan, Z. H. and Fujise, K. (2002). Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and Fortilin. The potential role of MCL1 as a fortilin chaperone. J. Biol. Chem. 277, 37430-37438 https://doi.org/10.1074/jbc.M207413200