DOI QR코드

DOI QR Code

Poly(benzyl-L-histidine)-b-Poly(ethylene glycol) Micelle Engineered for Tumor Acidic pH-Targeting, in vitro Evaluation

  • Lee, Eun-Seong (Division of Biotechnology, The Catholic University of Korea) ;
  • Youn, Yu-Seok (College of Pharmacy, Pusan National University)
  • Published : 2008.08.20

Abstract

A polymeric micelle, based on the poly(benzyl-L-histidine)-b-poly(ethylene glycol) (polyBz-His-b-PEG) diblock copolymer, was designed as a tumor-specific targeting carrier. The micelles (particle size: 67-80 nm, critical micelle concentration (CMC); 2-3 $\mu$g/mL) were formed from the diafilteration method at pH 7.4, as a result of self-assembly of the polyBz-His block at the core and PEG block on the shell. Removing benzyl (Bz) group from polyBz-His block provided pH-sensitivity of the micellar core; the micelles were physically destabilized in the pH range of pH 7.4-5.5, depending on the content of the His group free from Bz group. The ionization of His group at a slightly acidic pH promoted the deformation of the interior core. These pHdependent physical changes of the micelles provide the mechanism for pH-triggering anticancer drug (e.g., doxorubicin: DOX) release from the micelle in response to the tumor’s extracellular pH range (pH 7.2-6.5).

Keywords

References

  1. Ye, Y. Q.; Yang, F. L.; Hu, F. Q.; Du, Y. Z.; Yuan, H.; Yu, H. Y. Int. J. Pharm. 2008, 352, 294 https://doi.org/10.1016/j.ijpharm.2007.10.035
  2. Bae, Y.; Kataoka, K. J. Control Release 2006, 116, 49 https://doi.org/10.1016/j.jconrel.2006.09.044
  3. Sin, J. H.; Kim, M.; Park, S.; Bang, J. H.; Sohn, D. Bull. Korean Chem. Soc. 2006, 27, 251 https://doi.org/10.5012/bkcs.2006.27.2.251
  4. Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. J. Control Release 2000, 65, 271 https://doi.org/10.1016/S0168-3659(99)00248-5
  5. Lee, E. S.; Na, K.; Bae, Y. H. J. Control Release 2003, 91, 103 https://doi.org/10.1016/S0168-3659(03)00239-6
  6. Lee, E. S.; Na, K.; Bae, Y. H. Nano Lett. 2005, 5, 325 https://doi.org/10.1021/nl0479987
  7. Oh, K. T.; Yin, H.; Lee, E. S.; Bae, Y. H. J. Mater. Chem. 2007, 17, 3987 https://doi.org/10.1039/b707142f
  8. Campbell, R. B. Anti-cancer Agents in Medical Chemistry 2006, 6, 503 https://doi.org/10.2174/187152006778699077
  9. Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Drug Discov. Today 2006, 11, 812 https://doi.org/10.1016/j.drudis.2006.07.005
  10. Torchilin, V. P. Cell Mol. Life Sci. 2004, 61, 2549 https://doi.org/10.1007/s00018-004-4153-5
  11. Na, K.; Lee, E. S.; Bae, Y. H. Bioconjug. Chem. 2007, 18, 1568 https://doi.org/10.1021/bc070052e
  12. Wei, H.; Zhang, X. Z.; Chen, W. Q.; Cheng, S. X.; Zhuo, R. X. J. Biomed. Mater. Res. A 2007, 83, 980
  13. Ponce, A. M.; Vujaskovic, Z.; Yuan, F.; Needham, D.; Dewhirst, M. W. Int. J. Hyperthermia 2006, 22, 205 https://doi.org/10.1080/02656730600582956
  14. Rapoport, N.; Gao, Z.; Kennedy, A. J. Natl. Cancer Inst. 2007, 99, 1095 https://doi.org/10.1093/jnci/djm043
  15. Berret, J. F.; Schonbeck, N.; Gazeau, F.; EI Kharrat, D.; Sandre, O.; Vacher, A.; Airiau, M. J. Am. Chem. Soc. 2006, 128, 1755 https://doi.org/10.1021/ja0562999
  16. Veronese, F. M.; Schiavon, O.; Pasut, G.; Mendichi, R.; Andersson, L.; Tsirk, A.; Ford, J.; Wu, G.; Kneller, S.; Davies, J.; Duncan, R. Bioconjug. Chem. 2005, 16, 775 https://doi.org/10.1021/bc040241m
  17. Khandare, J. J.; Jayant, S.; Singh, A.; Chandna, P.; Wang, Y.; Vorsa, N.; Minko, T. Bioconjug. Chem. 2006, 17, 1464 https://doi.org/10.1021/bc060240p
  18. Torchilin, V. P.; Lukyanov, A. N.; Gao, Z.; Papahadjopoulos- Sternberq, B. Proc. Natl. Acad. Sci. USA 2003, 100, 6039 https://doi.org/10.1073/pnas.0931428100
  19. Vinogradov, S.; Batrakova, E.; Li, S.; Kabanov, A. Bioconjug. Chem. 1999, 10, 851 https://doi.org/10.1021/bc990037c
  20. Liu, S. Q.; Wiradharma, N.; Gao, S. J.; Tong, Y. W.; Yang, Y. Y. Biomaterials 2007, 28, 1423 https://doi.org/10.1016/j.biomaterials.2006.11.013
  21. Park, E. K.; Kim, S. Y.; Lee, S. B.; Lee, Y. M. J. Control Release 2005, 109, 158 https://doi.org/10.1016/j.jconrel.2005.09.039
  22. Lee, E. S.; Oh, K. T.; Kim, D.; Youn, Y. S.; Bae, Y. H. J. Control Release 2007, 123, 19 https://doi.org/10.1016/j.jconrel.2007.08.006
  23. Lee, E. S.; Kim, D.; Youn, Y. S.; Oh, K. T.; Bae, Y. H. Angew. Chem. Int. Ed. 2008, 47, 2418 https://doi.org/10.1002/anie.200704121
  24. Na, K.; Lee, K. H.; Bae, Y. H. J. Control Release 2004, 97, 513 https://doi.org/10.1016/j.jconrel.2004.04.005
  25. Na, K.; Lee, K. H.; Bae, Y. H. J. Control Release 2003, 87, 3 https://doi.org/10.1016/S0168-3659(02)00345-0
  26. Bae, Y.; Nishiyama, N.; Fukushima, S.; Koyama, H.; Yasuhiro, M.; Kataoka, K. Bioconjug. Chem. 2005, 16, 122 https://doi.org/10.1021/bc0498166
  27. Sawant, R. M.; Hurley, J. P.; Salmaso, S.; Kale, A.; Tolcheva, E.; Levchenko, T. S.; Torchilin, V. P. Bioconjug. Chem. 2006, 17, 943 https://doi.org/10.1021/bc060080h
  28. Gillies, E. R.; Fréchet, J. M. Bioconjug. Chem. 2005, 16, 361 https://doi.org/10.1021/bc049851c
  29. Kim, G. M.; Bae, Y. H.; Jo, W. H. Macromol. Biosci. 2005, 5, 1118 https://doi.org/10.1002/mabi.200500121
  30. Yin, H.; Lee, E. S.; Kim, D.; Lee, K. H.; Oh, K. T.; Bae, Y. H. J. Control Release 2008, 126, 130 https://doi.org/10.1016/j.jconrel.2007.11.014
  31. Licciardi, M.; Giammona, G.; Du, J.; Armes, S. P.; Tang, Y.; Lewis, A. L. Polymer 2006, 47, 2946 https://doi.org/10.1016/j.polymer.2006.03.014
  32. Engin, K.; Leeper, D. B.; Cater, J. R.; Thistlethwaite, A. J.; Tupchong, L.; McFarlane, J. D. Int. J. Hyperthermia. 1995, 11, 211 https://doi.org/10.3109/02656739509022457
  33. van Sluis, R.; Bhujwalla, Z. M.; Raghunand, N.; Ballesteros, P.; Alvarez, J.; Cerdán, S.; Galons, J. P.; Gillies, R. J. Magn. Reson. Med. 1999, 41, 743 https://doi.org/10.1002/(SICI)1522-2594(199904)41:4<743::AID-MRM13>3.0.CO;2-Z
  34. Ojugo, A. E.; Mcsheehy, P. M. J.; Mcintyre, D. J. O.; Mccoy, C.; Stubbs, M.; Leach, M. O.; Judson, I. R.; Griffiths, J. R. NMR Biomed. 1999, 12, 495 https://doi.org/10.1002/(SICI)1099-1492(199912)12:8<495::AID-NBM594>3.0.CO;2-K
  35. Han, S. K.; Na, K.; Bae, Y. H. Colloids Surf. A: Physicochem. Eng. Aspects 2003, 214, 49 https://doi.org/10.1016/S0927-7757(02)00389-8
  36. Kang, K. H.; Kim, H. U.; Lim, K. H. Bull. Korean Chem. Soc. 2007, 28, 667 https://doi.org/10.5012/bkcs.2007.28.4.667
  37. Yamagata, M.; Hasuda, K.; Stamato, T.; Tannock, I. F. Br. J. Cancer 1998, 77, 1726 https://doi.org/10.1038/bjc.1998.289

Cited by

  1. Biocompatible Poly(2-hydroxyethyl methacrylate)-b-poly(L-histidine) Hybrid Materials for pH-Sensitive Intracellular Anticancer Drug Delivery vol.22, pp.5, 2011, https://doi.org/10.1002/adfm.201102756
  2. -histidine) Based Triblock Copolymers: pH Induced Reassembly of Copolymer Micelles and Mechanism Underlying Endolysosomal Escape for Intracellular Delivery vol.15, pp.11, 2014, https://doi.org/10.1021/bm5010756
  3. Lipo-Poly(L-histidine) Hybrid Materials with pH-Sensitivity, Intracellular Delivery Efficiency, and Intrinsic Targetability to Cancer Cells vol.35, pp.9, 2014, https://doi.org/10.1002/marc.201300892
  4. Development of Worm-like Polymeric Drug Carriers with Multiple Ligands for Targeting Heterogeneous Breast Cancer Cells vol.31, pp.8, 2008, https://doi.org/10.5012/bkcs.2010.31.8.2265