DOI QR코드

DOI QR Code

Synthesis, Characterization, and Application of Zr,S Co-doped TiO2 as Visible-light Active Photocatalyst

  • Kim, Sun-Woo (Department of Applied Chemistry, Kyungpook National University) ;
  • Khan, Romana (Department of Applied Chemistry, Kyungpook National University) ;
  • Kim, Tae-Jeong (Department of Applied Chemistry, Kyungpook National University) ;
  • Kim, Wha-Jung (School of Architecture, Kyungpook National University)
  • Published : 2008.06.20

Abstract

A series of Zr,S co-doped $TiO_2$ were synthesized by a modified sol-gel method and characterized by various spectroscopic and analytical techniques. The presence of sulfur caused a red-shift in the absorption band of $TiO_2$. Co-doping of sulfur and zirconium (Zr-$TiO_2$-S) improves the surface properties such as surface area, pore volume, and pore diameter and also enhances the thermal stability of the anatase phase. The Zr-$TiO_2$-S systems are very effective visible-light active catalysts for the degradation of toluene. All reactions follow pseudo firstorder kinetics with the decomposition rate reaching as high as 77% within 4 h. The catalytic activity decreases in the following order: Zr-$TiO_2$-S >$TiO_2$-S >Zr-$TiO_2$>$TiO_2$$\approx$ P-25, demonstrating the synergic effect of codoping with zirconium and sulfur. When the comparison is made within the series of Zr-$TiO_2$-S, the catalytic performance is found to be a function of Zr-contents as follows: 3 wt % Zr-TiO2-S >0.5 wt % Zr-$TiO_2$-S> 5 wt % Zr-$TiO_2$-S >1 wt % Zr-$TiO_2$-S. Higher calcination temperature decreases the reactivity of Zr-$TiO_2$-S.

Keywords

References

  1. Fujishima, A.; Honda, K. Nature 1972, 238, 37 https://doi.org/10.1038/238037a0
  2. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69 https://doi.org/10.1021/cr00033a004
  3. Linsebigler, A. L.; Lu, G.; Yates Jr., J. T. Chem. Rev. 1995, 95, 735 https://doi.org/10.1021/cr00035a013
  4. Fujishima, A.; Hashimoto, K.; Watanabe, T. $TiO_2$ Photocatalysis: Fundamentals and Application; BKC: Tokyo, 1999
  5. Takahashi, Y.; Tatsuma, T. Langmuir 2005, 2, 12357
  6. Lim, S. H.; Luo, J.; Zhong, Z.; Ji, W.; Lin, J. Inorg. Chem. 2005, 44, 4124 https://doi.org/10.1021/ic0501723
  7. Kim, S.; Hwang, S.-J.; Choi, W. J. Phys. Chem. B 2005, 109, 24260 https://doi.org/10.1021/jp055278y
  8. Wang, X. H.; Li, J.-G.; Kamiyama, H.; Moriyoshi, Y.; Ishigaki, T. J. Phys. Chem. B 2006, 110, 6804 https://doi.org/10.1021/jp060082z
  9. Ashi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269 https://doi.org/10.1126/science.1061051
  10. Umebayashi, T.; Yamaki, T.; Tanaka, S.; Asai, K. Chem. Lett. 2003, 32, 330 https://doi.org/10.1246/cl.2003.330
  11. Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385 https://doi.org/10.1021/ja056494n
  12. Jiang, D.; Xu, Y.; Hou, B.; Wu, D.; Sun, Y. J. Solid State Chem. 2007, 180, 1787 https://doi.org/10.1016/j.jssc.2007.03.010
  13. Lettmann, C.; Hinrichs, H.; Maier, W. F. Angew. Chem. Int. Ed. Engl. 2001, 40, 3160 https://doi.org/10.1002/1521-3773(20010903)40:17<3160::AID-ANIE3160>3.0.CO;2-Z
  14. Liu, B.; Zhao, X.; Zhang, N.; Zhao, Q.; He, X.; Feng, J. Surf. Sci. 2005, 595, 203 https://doi.org/10.1016/j.susc.2005.08.016
  15. Choi, W.; Termin, A.; Hoffmann, M. R. J. Phys. Chem. 1994, 98, 13669 https://doi.org/10.1021/j100102a038
  16. Ikeda, S.; Sugiyama, N.; Pal, B.; Marcí, G.; Palmisano, L.; Noguchi, H.; Uosaki, K.; Ohtani, B. Phys. Chem. Chem. Phys. 2001, 3, 267 https://doi.org/10.1039/b008028o
  17. Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Appl. Catal., A 2004, 265, 115 https://doi.org/10.1016/j.apcata.2004.01.007
  18. Cong, Y.; Zhang, J.; Chen, F.; Anpo, M. J. Phys. Chem. C 2007, 111, 6976 https://doi.org/10.1021/jp0685030
  19. Ren, W.; Ai, Z.; Jia, F.; Zhang, L.; Fan, X.; Zou, Z. Appl. Catal., B: Environ. 2007, 69, 138 https://doi.org/10.1016/j.apcatb.2006.06.015
  20. Serpone, N. J. Phys. Chem. B 2006, 110, 24287 https://doi.org/10.1021/jp065659r
  21. Wang, H.; Lewis, J. P. J. Phys.: Condens. Matter. 2006, 18, 421 https://doi.org/10.1088/0953-8984/18/2/006
  22. Ho, W.; Yu, J. C.; Lee, S. J. Solid State Chem. 2006, 179, 1171 https://doi.org/10.1016/j.jssc.2006.01.009
  23. Zhao, W.; Ma, W.; Chen, C.; Zhao, J.; Shuai, Z. J. Am. Chem. Soc. 2004, 126, 4782 https://doi.org/10.1021/ja0396753
  24. Gao, B.; Ma, Y.; Cao, Y.; Yang, W.; Yao, J. J. Phys. Chem. B 2006, 110, 14391 https://doi.org/10.1021/jp0624606
  25. Ohno, T.; Miyamoto, Z.; Nishijima, K.; Kanemitsu, H.; Xueyuan, F. Appl. Catal., A 2006, 302, 62 https://doi.org/10.1016/j.apcata.2005.12.010
  26. Morikawa, T.; Irokawa, Y.; Ohwaki, T. Appl. Catal., A 2006, 314, 123 https://doi.org/10.1016/j.apcata.2006.08.011
  27. Fu, X.; Clark, L. A.; Yang, Q.; Anderson, M. A. Environ. Sci. Technol. 1996, 30, 647 https://doi.org/10.1021/es950391v
  28. Twesme, T. M.; Tompkins, D. T.; Anderson, M. A.; Root, T. W. Appl. Catal., B: Environ. 2006, 64, 153 https://doi.org/10.1016/j.apcatb.2005.11.010
  29. Yu, J. C.; Lin, J.; Kwok, R. W. M. J. Phys. Chem. B 1998, 102, 5094 https://doi.org/10.1021/jp980332e
  30. Huang, Y.; Zheng, Z.; Ai, Z.; Zhang, L.; Fan, X.; Zou, Z. J. Phys. Chem. B 2006, 110, 19323 https://doi.org/10.1021/jp064135o
  31. Wang, X.; Yu, J. C.; Chen, Y.; Wu, L.; Fu, X. Environ. Sci. Technol. 2006, 40, 2369 https://doi.org/10.1021/es052000a
  32. Qui, S.; Starr, T. L. J. Electrochem. Soc. 2007, 154, H472 https://doi.org/10.1149/1.2718475
  33. Khan, R.; Kim, S. W.; Kim, T.-J.; Lee, H. S. Bull. Korean Chem. Soc. 2007, 28, 1951 https://doi.org/10.5012/bkcs.2007.28.11.1951
  34. Zhu, Y.; Liu, T.; Ding, C. J. Mater. Res. 1999, 14, 442 https://doi.org/10.1557/JMR.1999.0063
  35. Cheng, P.; Qiu, J.; Gu, M.; Shangguan, W. Mater. Lett. 2004, 58, 3751 https://doi.org/10.1016/j.matlet.2004.08.008
  36. Ren, L.; Huang, X.; Sun, F.; He, X. Mater. Lett. 2007, 61, 427 https://doi.org/10.1016/j.matlet.2006.04.097
  37. Sun, H.; Bai, Y.; Cheng, Y.; Jin, W.; Xu, N. Ind. Eng. Chem. Res. 2006, 45, 4971 https://doi.org/10.1021/ie060350f
  38. Bacsa, R.; Kiwi, J.; Ohno, T.; Albers, P.; Nadtochenko, V. J. Phys. Chem. B 2005, 109, 5994 https://doi.org/10.1021/jp044979c
  39. Yu, J. C.; Ho, W.; Yu, J.; Yip, H.; Wong, P. K.; Zhao, J. Environ. Sci. Technol. 2005, 39, 1175 https://doi.org/10.1021/es035374h
  40. Pillai, S. C.; Periyat, P.; George, R.; McCormack, D. E.; Seery, M. K.; Hayden, H.; Colreavy, J.; Corr, D.; Hinder, S. J. J. Phys. Chem. C 2007, 111, 1605 https://doi.org/10.1021/jp065933h
  41. Padmanabhan, S. C.; Pillai, S. C.; Colreavy, J.; Balakrishnan, S.; McCormack, D. E.; Perova, T. S.; Gun`ko, Y.; Hinder, S. J.; Kelly, J. M. Chem. Mater. 2007, 19, 4474 https://doi.org/10.1021/cm070980n
  42. Ohsaka, T.; Izumi, F.; Fujiki, Y. J. Raman Spectrosc. 1978, 7, 321 https://doi.org/10.1002/jrs.1250070606
  43. Hamal, D. B.; Klabunde, K. J. J. Colloid Interface Sci. 2007, 311, 514 https://doi.org/10.1016/j.jcis.2007.03.001
  44. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603 https://doi.org/10.1351/pac198557040603
  45. Yu, J.; Yu, J. C.; Leung, M. K.-P.; Ho, W.; Cheng, B.; Zhao, X.; Zhao, J. J. Catal. 2003, 217, 69
  46. Kondo, J. N.; Yamashita, T.; Nakajima, K.; Lu, D.; Hara, M.; Domen, K. J. Mater. Chem. 2005, 15, 2035 https://doi.org/10.1039/b418331b
  47. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737 https://doi.org/10.1038/353737a0
  48. Shi, Z. M.; Ye, X. Y.; Liang, K. M.; Gu, S. R.; Pan, F. J. Mater. Sci. Lett. 2003, 22, 1255 https://doi.org/10.1023/A:1025402017295
  49. Lettmann, C.; Hildenbrand, K.; Kish, H.; Macyk, W.; Maier, W. F. Appl. Catal., B: Environ. 2001, 32, 215 https://doi.org/10.1016/S0926-3373(01)00141-2
  50. Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z. Chem. Mater. 2002, 14, 3808 https://doi.org/10.1021/cm020027c
  51. Sakthivel, S.; Kisch, H. Angew. Chem. Int. Ed. 2003, 42, 4908 https://doi.org/10.1002/anie.200351577
  52. Ollis, D. F.; Al-Ekabi, H. Photocatalytic Purification and Treatment of Water and Air; Elsevier: Amsterdam, 1993

Cited by

  1. Polymorphs for Altered Optical and Photocatalytic Properties vol.2009, pp.1687-529X, 2009, https://doi.org/10.1155/2009/294042
  2. Nanotube Composites with Enhanced Photocatalytic Activity vol.2, pp.6, 2012, https://doi.org/10.1021/cs200621c
  3. Synthesis and enhanced photocatalytic activity of Zr-doped N-TiO2 nanostructures vol.26, pp.1, 2015, https://doi.org/10.1007/s10854-014-2434-9
  4. /graphene quantum dots composites with enhanced photocatalytic activity vol.7, pp.38, 2017, https://doi.org/10.1039/C7RA01856H
  5. Structural, Electronic and Optical Properties of S-Doped Anatase TiO2 vol.727-728, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.727-728.79
  6. composited with carbon nanofibers or nitrogen-doped carbon nanotubes synthesized using coal fly ash as a catalyst: bisphenol-A photodegradation efficiency evaluation vol.42, pp.6, 2018, https://doi.org/10.1039/C7NJ04787H
  7. anchored on zeolites derived from coal fly ash for the photodegradation of bisphenol-A vol.42, pp.3, 2018, https://doi.org/10.1039/C7NJ02885G
  8. Sol–gel doped TiO2 nanomaterials: a comparative study vol.51, pp.3, 2009, https://doi.org/10.1007/s10971-009-2017-z
  9. Influence of Zr–S co-doping on the electronic structure and optical properties of anatase TiO2: first-principles GGA + U method vol.125, pp.2, 2019, https://doi.org/10.1007/s00339-019-2416-0
  10. Formation of Layered Bi5Ti3FeO15 Perovskite in Bi2O3-TiO2-Fe2O3 Containing System vol.30, pp.12, 2008, https://doi.org/10.5012/bkcs.2009.30.12.3011
  11. Energy Band Structure and Photocatalytic Property of Fe-doped Zn2TiO4 Material vol.30, pp.12, 2008, https://doi.org/10.5012/bkcs.2009.30.12.3021
  12. Structure Related Photocatalytic Properties of TiO2 vol.30, pp.2, 2008, https://doi.org/10.5012/bkcs.2009.30.2.402
  13. Mesoporous Assembly of Layered Titanate with Well-Dispersed Pt Cocatalyst vol.30, pp.2, 2008, https://doi.org/10.5012/bkcs.2009.30.2.449
  14. Synthesis of Nanocrystalline ZnFe2O4 by Polymerized Complex Method for its Visible Light Photocatalytic Application: An Efficient Photo-oxidant vol.30, pp.8, 2008, https://doi.org/10.5012/bkcs.2009.30.8.1738
  15. Photocatalytic Degradation Characteristics of Organic Compound by Boron-doped TiO2 Catalysts vol.26, pp.6, 2008, https://doi.org/10.5572/kosae.2010.26.6.649
  16. Photocatalytic removal of 2-nitrophenol using silver and sulfur co-doped TiO2 under natural solar light vol.72, pp.3, 2008, https://doi.org/10.2166/wst.2015.180
  17. Synthesis, characterization and visible light photocatalytic activity of Mg2+ and Zr4+ co-doped TiO2 nanomaterial for degradation of methylene blue vol.5, pp.2, 2017, https://doi.org/10.1016/j.jascer.2017.03.006
  18. The influence of Al2O3 content on Al2O3-ZrO2 composite-textural structural and morphological studies vol.6, pp.10, 2019, https://doi.org/10.1088/2053-1591/ab352d
  19. Photocatalytic activity and antibacterial behavior of TiO 2 coatings co-doped with copper and nitrogen via sol–gel method vol.93, pp.3, 2020, https://doi.org/10.1007/s10971-019-05085-1
  20. Synergistic effects of zirconium and silver co-dopants in TiO2 nanoparticles for photocatalytic degradation of an organic dye and antibacterial activity vol.56, pp.2, 2008, https://doi.org/10.1007/s41779-019-00368-w
  21. Photocatalytic and bactericidal properties and molecular docking analysis of TiO2 nanoparticles conjugated with Zr for environmental remediation vol.10, pp.50, 2008, https://doi.org/10.1039/d0ra05862a