• Title/Summary/Keyword: Toluene decomposition

Search Result 75, Processing Time 0.027 seconds

Effect of Benzene, Acetone, and Methyl Mercaptan Vapor on Photocatalytic Decomposition of Toluene Vapor (톨루엔의 광촉매 분해시 벤젠, 아세톤 및 메틸메르캅탄 증기가 미치는 영향)

  • Kam, Sang-Kyu;Jeon, Jin-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.1971-1976
    • /
    • 2014
  • In this study, the photocatalytic decomposition characteristics of single toluene, toluene mixed with benzene, toluene mixed with acetone, and toluene mixed methyl mercaptan (MM) by UV reactor installed with $TiO_2$-coated perforated plate were studied. The photocatalytic decomposition rate of single toluene, toluene mixed with benzene, toluene mixed with acetone, and toluene mixed with MM fitted well on Langmuir-Hinshelwood (L-H) kinetics equation. The maximum elimination capacity was obtained to be $628g/m^3{\cdot}d$ for single toluene, $499g/m^3{\cdot}d$ for toluene mixed with benzene, $318g/m^3{\cdot}d$ for toluene mixed with acetone, and $513g/m^3{\cdot}d$ for toluene mixed with MM, respectively. The negative effect in photocatalytic decomposition of toluene are found to be in the order of acetone>benzene>MM.

Removal Characteristics of Single and Binary Vapors of Acetone, Toluene, and Methyl Mercaptan by Cylindrical UV Reactor Installed with TiO2-Coated Perforated Plane (TiO2를 코팅한 다공판을 설치한 원통형 UV 반응기에 의한 아세톤, 톨루엔, 메틸메르캅탄 단일 증기 및 2성분 혼합증기의 제거특성)

  • Jeon, Jin-Woo;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.3
    • /
    • pp.317-322
    • /
    • 2015
  • The photocatalytic decomposition characteristics of toluene, acetone, and methyl mercaptan (MM) by UV reactor installed with $TiO_2$-coated perforated plane were studied. The removal efficiency of single toluene, acetone, and MM vapor was increased with increasing oxygen concentration, but decreased with increasing inlet concentration. Elimination capacity of single toluene, acetone, and MM vapor was obtained to be $628g/m^3{\cdot}day$, $1,041g/m^3{\cdot}day$, and $2,158g/m^3{\cdot}day$, respectively. Also, the photocatalytic decomposition of binary vapor consisted of toluene and acetone, toluene and MM, acetone and MM were observed. Elimination capacity of toluene mixed with acetone, toluene mixed with MM, acetone mixed with toluene, acetone mixed with MM, MM mixed with toluene, and MM mixed with acetone was $327g/m^3{\cdot}day$, $512g/m^3{\cdot}day$, $128g/m^3{\cdot}day$, $266g/m^3{\cdot}day$, $785g/m^3{\cdot}day$ and $883g/m^3{\cdot}day$, respectively. The inhibitory effect of acetone was higher than MM in photocatalytic decomposition of toluene, the inhibitory effect of toluene was higher than MM photocatalytic decomposition of acetone, and the inhibitory effect of toluene was higher than acetone in photocatalytic decomposition of MM.

Decomposition of Odorous Gases in a Pilot-scale Nonthermal Plasma Reactor

  • Hwang, Yoon-Ho;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E2
    • /
    • pp.57-65
    • /
    • 2005
  • An experimental study was performed on the decomposition of gaseous ammonia and two selected volatile organic compounds (VOCs: toluene and acetone) in a combined nonthermal plasma reactor with corona and glow discharges. A lab pilot scale reactor (206 liter) equipped with a high electric power pack was used to determine the decomposition efficiency in relation with the inlet concentration and applied voltage. Three different types of discharging electrode such as wired rack, wire strings for corona discharge, and thin plate for glow discharge were put in order in the reactor. While decomposition of ammonia decreased with an increase in the initial concentration, acetone showed an opposite result. In the case of toluene however no explicit tendency was found in toluene and aceton. Negative discharge resulted in high decomposition efficiency than the positive one for all gases. A better removal of gas phase element could be achieved when fume dust were present simultaneously.

Removal of Benzene and Toluene by Photo-catalyst Adsorbent Prepared from MSWI Fly Ash (소각비산재로 제조한 광촉매 흡착제의 벤젠과 톨루엔 제거특성)

  • Choi So-Young;Shim Young-Sook;Lee Woo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.4
    • /
    • pp.431-438
    • /
    • 2005
  • In order to apply the photocatalytic decomposition of aromatic VOCs, adsorbent prepared from MSWI fly ash was coated by $TiO_2$ solution to endow with photo-catalytic function. The effects of coating number, existence of light source and the type of $TiO_2$ solution used for coating were examined. Adsorbent coated with amorphous $TiO_2$ solution showed higher adsorptivity than adsorbent coated with crystal $TiO_2$ solution. Without light source, breakthrough curve of photo -catalyst absorbent for VOCs removal was similar to that of absorbent made from MSWI fly ash. On the other hand, breakthrough time was enlarged with light source and total removal efficiency of benzene and toluene was also increased. It can be explained as photo-decomposition effect of $TiO_2$ photo-catalyst. Total removal efficiency of benzene and toluene was increased according to the increase of coating number with light source. It was due to the effect of adsorption and photo reaction of photo-catalytic adsorbent. But total removal efficiency of benzene was lower than that of toluene. Because benzene was removed more effectively than toluene by adsorption, but photo - decomposition effect oi toluene was more high than benzene.

Photocatalytic Degradation Characteristics of Organic Compound by Boron-doped TiO2 Catalysts

  • Nam, Chang-Mo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.649-656
    • /
    • 2010
  • Boron-doped $TiO_2$ photocatalysts were synthesized by a modified sol-gel method and their photocatalytic activities were performed and compared with those of pure synthetic and commercial $TiO_2$ catalysts under UV or visible light conditions. Pure $TiO_2$ itself exhibited very negligible photocatalytic performance under visible light conditions in the aspects of toluene decomposition reactions, although significant decomposition potential was observed as expected with UV light conditions. However, boron doping over $TiO_2$ significantly improved photocatalytic activity particularly under visible conditions, where over 95% degradation of toluene was achieved with 1wt% $B-TiO_2$ within 2 hrs. All the decomposition reactions seemed to follow pseudo first-order kinetics. The effects of boron-doping and its characteristics are further discussed through the kinetic studies and comparison of results.

Photodegradation of Gaseous Toluene Using Short-Wavelength UV/TiO2 and Treatment of Decomposition Products by Wet Scrubber (단파장자외선/TiO2 공정에 의한 가스상 톨루엔의 분해 및 습식세정장치에 의한 분해생성물의 제거)

  • Jeong, Ju-Young;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.433-440
    • /
    • 2007
  • The photodegradation and by-products of the gaseous toluene with $TiO_2$ (P25) and short-wavelength UV ($UV_{254+185nm}$) radiation were studied. The toluene was decomposed and mineralized efficiently owed to the synergistic effect of photochemical oxidation in the gas phase and photocatalytic oxidation on the $TiO_2$ surface. The toluene by the $UV_{254+185nm}$ photoirradiated $TiO_2$ were mainly mineralized $CO_2$ and CO, but some water-soluble organic intermediates were also formed under severe reaction conditions. The ozone and secondary organic aerosol were produced as undesirable by-products. It was found that wet scrubber was useful as post-treatment to remove water-soluble organic intermediates. Excess ozone could be easily removed by means of a $MnO_2$ ozone-decomposition catalyst. It was also observed that the $MnO_2$ catalyst could decompose organic compounds by using oxygen reactive species formed in process of ozone decomposition.

Decomposition Characterist of Toluene Using a Glidarc Water-jet Plasma (Glidarc 워터젯 플라즈마를 이용한 톨루엔 분해 특성)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.329-335
    • /
    • 2008
  • Volatile organic compounds emitted to the atmosphere can cause adverse effects on human health and participate in photochemical smog formation reactions. The destruction of a series of VOCs has been carried out by non-thermal plasma in other researches. And the characteristic of non-thermal plasma was operated at atmospheric pressure and low temperature. A new type non-thermal plasma reactor was investigated combined Glidarc plasma with water jet in this research. Also, it was found that the water-jet had an significant effect on the toluene removal efficiency. But too much water content does not favor toluene decomposition by decreasing of reaction temperature. The input toluene concentration, gas flow rate, water flow rate and specific energy input were used as experiment variables. The toluene removal efficiency, energy efficiency and specific energy input were 75.3%, 146.6 g/kWh and $1.12kWh/m^3$ at a water flow rate of 100 mL/min.

High Concentrated Toluene Decomposition by Non-thermal Plasma-Photocatalytic (Mn-Ti-MCM-41) Hybrid System (상온 방전 플라즈마-광촉매(Mn-Ti-MCM-41) 복합 시스템에 놓인 고농도 톨루엔의 분해성능)

  • Ban, Ji-Young;Son, Yeon-Hee;Lee, Sung-Chul;Kang, Misook;Choung, Suk-Jin;Sung, Joon-Yong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.413-421
    • /
    • 2005
  • This study focused on the decomposition of toluene in a plasma-photocatalytic hybrid system. Hexagonally packed meso-structured Mn-titanosilicates (Mn-Ti-MCM-41), as the photocatalysts, have been prepared by the hydrothermal method. The physical properties of the photocatalysts were characterized using XRD, XPS, TEM, BET/ICP, and $NH_3$/Toluene-TPD. Experiments were carried out at the applied voltage of 9.0 kV and at room temperature of $20^{\circ}C$. In the plasma only system, the activity of the toluene decomposition was higher than that in the photocatalytic system. However, the amount of by-products, such as phenol, $C_2{\sim}C_4$ alkene, was also increased in the plasma only system. However, the by-products decreased remarkably in a plasma-photocatalytic hybrid system. When Mn5mol%-Ti-MCM-41 was used as a photocatalyst in a plasma-photocatalytic hybrid system, the $CO_2$ selectivity in products was increased dramatically compared to other catalysts. It was confirmed that a plasma-photocatalytic hybrid system was better for toluene decomposition compared to photocatalytic and plasma only systems.

Decomposition of Harmful Materials by SPCP Discharge (연변방전에 의한 유해물질의 분해제거)

  • 우인성;황명환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1043-1048
    • /
    • 1998
  • The decomposition performance of the Surface induced Plasma Chemical Processing(SPCP) for benzene, toluene, xylene and $NO_2$ were experimentally examined. Discharge exciting frequency range was 5kHz and 10kHz, and low frequency discharge requires high voltage to inject high electric power in gas and to decompose contaminants. The decomposition rate of dioxide nitrogen for 5kHz power in gas and to decompose contaminants. The decomposition rate of dioxide nitrogen for 5kHz power supply is only 85%, but it’s rate for 10kHz power supply is very high, more than 96% when peak voltage is 12kv. Aromatic hydrocarbon vapor of up to 1000ppm is almost throughly decomposed at the flow rate of 1000$\ell$/min or lower rate under the discharge with electric power of several hundred watts. High decomposition rate is shown in every case, that is, for SPCP reactor is necessary to obtain the decomposition rate of more than 80~98%. The decomposition rate of benzene, toluene and xylene were 90~98% and dioxide nitrogen was 45~96%.

  • PDF

Photocatalytic activity of $TiO_2$ on nano-diamond powder prepared by Atomic Layer Deposition

  • Kim, Kwang-Dae;Dey, Nilay Kumar;Seo, Hyun-Ook;Kim, Dong-Wun;Nam, Jong-Won;Sim, Chae-Won;Jeong, Myung-Geun;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.425-425
    • /
    • 2011
  • The photocatalytic decomposition of toluene gas was investigated with $TiO_2$ on nano-diamond powder (NDP) under UV irradiation. Atomic layer deposition (ALD) was used for the growth of $TiO_2$ on the NDP. The structure and surface properties of catalysts were characterized by X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The photocatalytic activity for the toluene decomposition was evaluated by measuring the concentration change of toluene and $CO_2$ gas with gas chromatography (GC)-flame ionization detector (FID) system. The photocatalytic activities of $TiO_2$/NDP catalysts were compared with that of P-25. The rate of initial photocatalytic decomposition of toluene for the $TiO_2$/NDP catalysts was relatively lower when compared to P-25. The photocatalytic activity of P-25 was rapidly decreased with time, whereas, the deactivation of $TiO_2$/NDP catalysts was less pronounced. Therefore, as the reaction time increased, the photocatalytic activity of $TiO_2$/NDP catalysts became higher than that of P-25. The intermediates such as benzaldehyde or benzoic acid, etc were more easily adhered to the active site on the P-25 surface during reaction, resulting in easier deactivation of P-25. These results could be confirmed using FT-IR spectroscopy. We suggest that the NDP used as substrate can reduce the deactivation of $TiO_2$ on the surface.

  • PDF