Development of Surface Plasmon Resonance Immunosensor through Metal Ion Affinity and Mixed Self-Assembled Monolayer

  • Lee, Si-Ra (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Sim, Sang-Jun (Department of Chemical Engineering, Kwangwoon University) ;
  • Park, Chul-Hwan (College of Life Sciences and Biotechnology, Korea University) ;
  • Gu, Man-Bock (Department of Bio-Chemical Engineering, Dongyang University) ;
  • Hwang, Un-Yeon (School of Chemical and Biological Engineering, Seoul National University) ;
  • Yi, Jong-Heop (Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Oh, Byung-Keun (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
  • Published : 2008.10.31

Abstract

An immunosensor based on surface plasmon resonance (SPR) with enhanced performance was developed through a mixed self-assembled monolayer. A mixture of 16-mercaptohexadecanic acid (16-MHA) and 1-undecanethiol with various molar ratios was self-assembled on gold (Au) surface and the carboxylic acid groups of 16-MHA were then coordinated to Zn ions by exposing the substrate to an ethanolic solution of $Zn(NO_3)_2\cdot 6H_2O$. The antibody was immobilized on the SPR surface by exposing the functionalized substrate to the desired solution of antibody in phosphate-buffered saline (PBS) molecules. The film formation in series was confirmed by SPR and atomic force microscopy (AFM). The functionalized surface was applied to develop an SPR immunosensor for detecting human serum albumin (HSA) and the estimated detection limit (DL) was 4.27 nM. The limit value concentration can be well measured between ill and healthy conditions.

Keywords

References

  1. Alfredo de la E.-M., M. B. Gonzalez-Garcia, and A. Costa-Garcia. 2006. Determination of human serum albumin using aurothiomalate as electroactive label. Anal. Bioanal. Chem. 384: 742-750 https://doi.org/10.1007/s00216-005-0213-4
  2. Baek, S. H., Y. B. Shin, M. G. Kim, H. S. Ro, E. K. Kim, and B. H. Chung. 2004. Surface plasmon resonance imaging analysis of hexahistidine-tagged protein on the gold thin film coated with a calix crown derivative. Biotechnol. Bioprocess Eng. 9: 143-146 https://doi.org/10.1007/BF02932998
  3. Briand, E., M. Salmain, C. Compère, and C.-M. Pradier. 2006. Immobilization of protein A on SAMs for the elaboration of immunosensors. Colloids Surf. B Biointerfaces 53: 215-224 https://doi.org/10.1016/j.colsurfb.2006.09.010
  4. Cho, I. H., E. H. Paek, H. W. Lee, J. W. Choi, and S. H. Paek. 2004. Site-directed immobilization of antibody onto solid surfaces for the construction of immunochip. Biotechnol. Bioprocess Eng. 9: 112-117 https://doi.org/10.1007/BF02932993
  5. Darren, M. D., C. C. David, Y. Hong-Xing, and R. L. Christopher. 1998. Covalent coupling of immunoglobulin G to self-assembled monolayers as a method for immobilizing the interfacial recognition layer of a surface plasmon resonance immunosensor. Biosens. Bioelectron. 13: 1213-1225 https://doi.org/10.1016/S0956-5663(98)00059-1
  6. Dill, K., J. H. Song, J. A. Blomdahl, and J. D. Olson. 1997. Rapid, sensitive and specific detection of whole cells and spores using the light-addressable potentiometric sensor. J. Biochem. Biophys. Methods 34: 161-166 https://doi.org/10.1016/S0165-022X(97)01206-2
  7. Fagerstam, L. G., A. Frostell, R. Karlsson, M. Kullman, A. Larsson, M. Malmqvist, and H. Butt. 1990. Detection of antigen-antibody interactions by surface plasmon resonance. Application to epitope mapping. J. Mol. Recognit. 3: 208-214 https://doi.org/10.1002/jmr.300030507
  8. Gonzalez-Alonso, I. and A. Sanchez-Navarro. 1998. In J. Domenech-Berrozpe, J. Martinez-Lanao, and J. M. Pla-Delfina (eds.), Biofarmacia y Farmacocinetica, pp. 467-499, Vol. II. Sintesis S. A., Madrid, Spain
  9. Green, R. J., R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler. 2000. Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials 21: 1823-1835 https://doi.org/10.1016/S0142-9612(00)00077-6
  10. Harke, M., R. Teppner, O. M. Schulz, and H. Orendi. 1997. Description of a single modular optical setup for ellipsometry, surface plasmons, waveguide modes, and their corresponding imaging technique including Brewster angle microscopy. Rev. Sci. Instrum. 68: 3130-3134 https://doi.org/10.1063/1.1148256
  11. Jyoung, J. Y., S. Hong, W. Lee, and J. W. Choi. 2006. Immunosensor for the detection of Vibrio cholerae O1 using surface plasmon resonance. Biosens. Bioelectron. 21: 2315-2319 https://doi.org/10.1016/j.bios.2005.10.015
  12. Kodadek, T. 2001. Protein microarrays: Prospects and problems. Chem. Biol. 8: 105-115 https://doi.org/10.1016/S1074-5521(00)90067-X
  13. Kretschmann, E. 1971. Die bestimmung optischer Konstantan von metallen durch anregung von Oberflachenplasmaschwinggungen. Z. Physic 241: 313-324 https://doi.org/10.1007/BF01395428
  14. Kukanskis, K., J. Elkind, J. Melendez, T. Murphy, G. Miller, and H. Garner. 1999. Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor. Anal. Biochem. 274: 7-17 https://doi.org/10.1006/abio.1999.4241
  15. Lahiri, J., L. Isaacs, B. Grzybowski, J. D. Carbeck, and G. M. Whitesides. 1999. Biospecific binding of carbonic anhydrase to mixed SAMs presenting benzenesulfonamide ligands: A model system for studying lateral steric effects. Langmuir 15: 7186-7198 https://doi.org/10.1021/la9815650
  16. Lee, J. Y., H. J. Ko, S. H. Lee, and T. H. Park. 2006. Cell-based measurement of odorant molecules using surface plasmon resonance. Enzyme Microb. Technol. 39: 375-380 https://doi.org/10.1016/j.enzmictec.2005.11.036
  17. Lee, W., B. K. Oh, Y. M. Bae, S. H. Paek, W. H. Lee, and J. W. Choi. 2003. Fabrication of self-assembled protein A monolayer and its application as an immunosensor. Biosens. Bioelectron. 19: 185-192 https://doi.org/10.1016/S0956-5663(03)00195-7
  18. Lee, W., B. K. Oh, Y. W. Kim, and J. W. Choi. 2006. Signal enhancement of surface plasmon resonance based on gold nanoparticle-antibody complex for immunoassay. J. Nanosci. Nanotechnol. 6: 1-5
  19. Oh, B.-K., Y. K. Kim, W. Lee, Y. M. Bae, W. H. Lee, and J.-W. Choi. 2003. Immunosensor for detection of Legionella pneumophila using surface plasmon resonance. Biosens. Bioelectron. 18: 605-611 https://doi.org/10.1016/S0956-5663(03)00032-0
  20. Oh, B. K., W. Lee, B. S. Chun, Y. M. Bae, W. H. Lee, and J. W. Choi. 2005. The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosens. Bioelectron. 20: 1847-1850 https://doi.org/10.1016/j.bios.2004.05.010
  21. Peluso, P., D. S. Wilson, D. Do, H. Tran, M. Venkatasubbaiah, D. Quincy, et al. 2003. Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem. 312: 113-124 https://doi.org/10.1016/S0003-2697(02)00442-6
  22. Saber, R., S. Mutlu, and E. P. Kin. 2002. Glow-discharge treated piezoelectric quartz crystals as immunosensors for HSA detection. Biosens. Bioelectron. 17: 727-734 https://doi.org/10.1016/S0956-5663(02)00058-1
  23. Sakai, G., K. Ogata, T. Uda, N. Miura, and N. Yamazoe. 1998. A surface plasmon resonance-based immunosensor for highly sensitive detection of morphine. Sens. Actuators B 49: 5-12 https://doi.org/10.1016/S0925-4005(98)00107-5
  24. Salmon, Z., H. A. Macleod, and G. Tollin. 1997. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applilications to biological systems. Biochem. Biophys. Acta 1331: 131-153 https://doi.org/10.1016/S0304-4157(97)00003-8
  25. Suzuki, M., F. Ozawa, W. Sugimoto, and S. Aso. 2002. Miniature surface-plasmon resonance immunosensors - rapid and repetitive procedure. Anal. Bioanal. Chem. 372: 301-304 https://doi.org/10.1007/s00216-001-1209-3
  26. Vega, R. A., D. Maspoch, C. K. Shen, J. J. Kakkassery, B. J. Chen, R. A. Lamb, and C. A. Mirkin. 2006. Functional antibody arrays through metal ion-affinity templates. Chembiochem 7: 1653-1657 https://doi.org/10.1002/cbic.200600271
  27. Vega, R. A., D. Maspoch, K. Salaita, and C. A. Mirkin. 2005. Nanoarrays of single virus particles. Angew. Chem. Int. 44: 6013-6015 https://doi.org/10.1002/anie.200501978