A study on the biological characteristics of modified titanium surface

매식체 표면처리에 따른 생물학적 특성에 대한 연구

  • Kim, Jae-Hyuk (Department of Periodontology, School of Dentistry, Dan Kook University) ;
  • Chung, Chin-Hyung (Department of Periodontology, School of Dentistry, Dan Kook University) ;
  • Lim, Sung-Bin (Department of Periodontology, School of Dentistry, Dan Kook University) ;
  • Hong, Ki-Seok (Department of Periodontology, School of Dentistry, Dan Kook University)
  • 김재혁 (단국대학교 치과대학 치주과학교실) ;
  • 정진형 (단국대학교 치과대학 치주과학교실) ;
  • 임성빈 (단국대학교 치과대학 치주과학교실) ;
  • 홍기석 (단국대학교 치과대학 치주과학교실)
  • Published : 2008.09.30

Abstract

Purpose: The purpose of this research is to study about initial adhesion, proliferation and activation of osteoblast to titanium surface treated with machined, hydroxyapatite coating, resorbable blast material blasting and anodizing method. Material and Methods: After treating the titanium surface of each block with machined, impurities were removed and sterilized. The number of cells attached from cultured osteoblast of respective experimental groups were measured at 1, 4, 7, and 14day and alkaline phosphatase, calcium, and inorganic phosphate concentration of cultured solution was measured. Result: Anodizing group showed the highest rate of cell attachment and proliferation activity. RBM treated group showed the highest increasing on their alkaline phosphatase activity, on the calcium apposition, on inorganic phosphate apposition of 1 and 4 days in cultured osteoblast to compare with other groups. Conclusion: On the basis of these findings, we conclude that surface modification of titanium was profoundly effected on the attachment, proliferation and activation of osteoblast in initial stage osseointegration.

Keywords

References

  1. Lausmaa J. Surface spectroscopic characterization of titanium implant materials. Journal of Electron Spectroscopy and Related Phenomena 1996;81:343-361 https://doi.org/10.1016/0368-2048(95)02530-8
  2. Eisenbarth E, Velten D, Schenk-Meuser K et al. Interactions between cells and titanium surfaces. Biomolecular Engineering 2002;19:243-249 https://doi.org/10.1016/S1389-0344(02)00032-1
  3. Sul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 2003;24:3893-3907 https://doi.org/10.1016/S0142-9612(03)00261-8
  4. Aubin JE, Liu F, Malaval L, Gupta AK. Osteoblast and chondroblast differentiation. Bone 17 (Suppl.) 1995;77-83 https://doi.org/10.1016/8756-3282(95)00183-E
  5. Albreksson T, Brӓnemark PI, Hansson HA and Lindstom J. Osseointegrated titanium implants. Acta Orthop Scand 1981;52:155-170 https://doi.org/10.3109/17453678108991776
  6. Jaffin RA and Berman CL. The excessive loss of figure fixtures in type IV bone : a 5-year analysis. J Periodontol 1991;62:2-4 https://doi.org/10.1902/jop.1991.62.1.2
  7. Jemt T. Implant treatment in resorbed edentulous upper jaw. A three-year follow-up study in 70 patients. Clin Oral Impl Res 1993;4:187-194 https://doi.org/10.1034/j.1600-0501.1993.040404.x
  8. Jemt T, Chai J, Harnett J et al. A 5-year prospective multi-center follow-up report on overdentures supported by osseointegrated implants. Int J Oral Maxillofac Implants 1996;11:291-298
  9. Wennerberg A. The importance of surface roughness for implant incorporation. International Journal of Machine Tools and Manufacturing 1998;38:657-662 https://doi.org/10.1016/S0890-6955(97)00114-4
  10. Testori T, Wiseman L, Woolfe S, Porter SS. A prospective multicenter clinical study of the osseotite implant: four-year interim report. Int J Oral Maxillofac Implants 2001;16: 193-200
  11. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast response in vitro. Int J Oral Maxillofac Implants 1992;7(3):302-310
  12. Lohmann CH, Sagun R Jr, Sylvia VL et al. Surface roughness modulates the response of MG63 osteoblast-like cells to 1,25-(OH)2D3 through regulation of phospholipase A2 activity and activation of protein kinase A. J Biomed Mater Res 1999;47:139-151 https://doi.org/10.1002/(SICI)1097-4636(199911)47:2<139::AID-JBM4>3.0.CO;2-2
  13. Ericsson I, Johansson CB, Bystedt H, Norton MR. A histomorphometric evaluation of bone-to-implant contact on machine prepared and roughened titanium dental implants. A pilot study in the dog. Clin Oral Implants Res 1994;5: 202-206 https://doi.org/10.1034/j.1600-0501.1994.050402.x
  14. Larsson C, Thomsen P, Lausmaa J et al. Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morpholohy. Biomaterials 1994;15:1062-1074 https://doi.org/10.1016/0142-9612(94)90092-2
  15. Schneider G, Burridge K. Formation of focal adhesions by osteoblasts adhering to different substrata. Experimental Cell Research 1994;214:264-269 https://doi.org/10.1006/excr.1994.1257
  16. Stanford CM, Keller JC, Solursh M. Bone cell expression on titanium surfaces is altered by sterilization treatments. Journal of Dental Research 1994;73:1061-1071 https://doi.org/10.1177/00220345940730050801
  17. Stanford CM, Brand RA. Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. Journal of Prosthetic Dentistry 1999;81:553-561 https://doi.org/10.1016/S0022-3913(99)70209-X
  18. Branemark PI, Zarb GA, Albreksson T. Tissue integrated prosthesis. Osseointegration in clinical dentistry. Chicago: Quintessence Publishing Co. Inc. 1985
  19. Gottlander M, Albrektsson T. Histomorphometric studies of hydroxyapatite coated and uncoated CP titanium threaded implants in bone. Int J Oral Maxillofac Implants 1991;6: 399-404
  20. Gottlander M, Albrektsson T. A Histomorphometric study of unthreaded hydroxyapatite coated and titanium coated implants in rabbit bone. Int J Oral Maxillofac Implants 1992;7:485-490
  21. Denissen HW, Kalk W, Nieuport HM, Maltha JC, Hoofe A. Mandibular bone response to plama-sprayed coatings of hydroxyapatite. Int J Prosthodont 1990;3:53-58
  22. Oonishi H, Yamamoto M, Ishimura H et al. The Effect of Hydroxyapatite coating on Bone Growth into porous titanium alloy implants. J Bone Joint Surg 1989;71:213-216
  23. Hulshoff JEG, Hayakawa T, van Dijk K et al. Mechanical and histological evaluation of Ca-P plasma-spray and magnetron sputter-coated implants in trabecular bone of the goats. J Biomed Meter Res 1997;36:75-83 https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<75::AID-JBM9>3.0.CO;2-I
  24. Cheng Yang, Wuhan. The effect of calcium phosphate implant coating on osteoconduction. Oral Sug Oral Med Oral Pathol Oral Radiol Endod 2001;92:606-609 https://doi.org/10.1067/moe.2001.118477
  25. Schroeder A, Pohler O, Sutter F. Gewebereaktion auf ein Titan-Hohlzylin-derim-platat mit Titan-Spritzschichtoberflache. Schweiz Monatsschr Zahnheilkd 1976;86:713-727
  26. Babbush CA, Kent JN, Misiek DJ. Titanium plasma-sprayed(TPS) screw implants for the reconstruction of the edentulous mandible. J Oral Maxillofac Surg 1986;44: 274-282 https://doi.org/10.1016/0278-2391(86)90078-9
  27. Chang YL, Lew D, Park JB, Keller JC. Biomechanical and morphometric analysis of hydroxyapatite-coated implants with varying crystallinity. J Oral Maxillofac Surgery 1999;57:1096-1108 https://doi.org/10.1016/S0278-2391(99)90333-6
  28. Vercaigne S, Wolke JGC, Naert I, Jansen JA. A histological evaluation of TiO2 grit blasted and Ca-P magnetron sputtered coated implants placed in the trabecular bone of the goat: part 2. Clinical Oral Implants Research 2000;11: 314-324 https://doi.org/10.1034/j.1600-0501.2000.011004314.x
  29. Jones FH. Teeth and bones: applications of surface science to dental materials and related biomaterials. Surface Science Reports 2001;42:75-205 https://doi.org/10.1016/S0167-5729(00)00011-X
  30. Sul YT, Johansson CB, Jeong Y, Albrektsson T. The electrochemical oxide growth behavior on titanium in acid and alkaline electrolytes. Medical Engineering and Physics 2001;23:329-346 https://doi.org/10.1016/S1350-4533(01)00050-9