DOI QR코드

DOI QR Code

입자크기비에 따른 강-연성 혼합재의 공학적 특성

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio

  • 이창호 (조지아공대 토목공학과) ;
  • 윤형구 (고려대학교 건축.사회환경공학과) ;
  • 김래현 (고려대학교 건축.사회환경공학과) ;
  • 이우진 (고려대학교 건축.사회환경공학과) ;
  • 이종섭 (고려대학교 건축.사회환경공학과)
  • Lee, Chang-Ho (School of Civil and Environmental Eng., Georgia Institute of Technology) ;
  • Yoon, Hyung-Koo (Department of Civil, Environmental and Architectural Eng., Korea Univ.) ;
  • Kim, Rae-Hyun (Department of Civil, Environmental and Architectural Eng., Korea Univ.) ;
  • Lee, Woo-Jin (Department of Civil, Environmental and Architectural Eng., Korea Univ.) ;
  • Lee, Jong-Sub (Department of Civil, Environmental and Architectural Eng., Korea Univ.)
  • 발행 : 2008.08.31

초록

모래 입자와 연약한 고무 입자로 이루어진 강-연성 혼합재의 응력-변형 및 전단파 특성을 평가하기 위해 고무와 모래의 부피비(sf)와 입자 크기비(sr)를 달리하는 시료를 조성하였다. 벤더 엘리먼트가 설치된 압밀셀을 이용하여 응력-변형시험 및 $K_o$ 상태에서의 미소변형 전단파 시험을 실시하였다. 일정한 입자 크기비를 가지는 강-연성 혼합재는 강성의 입자에서 연성의 입자로 거동이 전이되는 응력-변형 및 미소변형 전단파 특성을 보였다. 또한, $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ 관계에서 모래의 부피비(sf)가 $0.4{\sim}0.6$인 구간에서 $\Lambda$계수가 급격히 증가하며 $\zeta$ 지수는 최대값을 보이는 것으로 관찰되었다. 전이 혼합재는 구속응력의 변화에 매우 민감한 거동을 보이며 연성인 고무입자는 재하 하중에 의해 쉽게 변형되므로 최소 간극율을 가지는 강-연성 혼합재의 부피비는 재하된 응력의 크기에 좌우된다. 실내시험을 이용한 본 연구에서는 입자 크기 비와 모래 부피비가 강성 입자와 연성 입자의 혼합재료 거동을 결정하는 것으로 요인으로 분석되었다.

Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.

키워드

참고문헌

  1. Ahmed, I. (1993), "Laboratory study on properties of rubber-soils", Final Rep., Indiana Dept. of Transp., Joint Hwy., Res. Proj., Rep. No. FHWA/IN/JHRP-93/4, Purdue Univ., West Lafayette, IN
  2. Ahmed, I. and Lovell, C. W. (1993), "Rubber soils as light weight geomaterials", Transportation research record 1422. Transportation Research Board, Washington D.C., 61-70
  3. Aydilek, A. h., Madden, E. T., and Demirkan, M. M. (2006), "Field evaluation of a leachate collection system constructed with scrap tires", J. Geotech. Geoenviron. Eng., 132(8), 990-1000 https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(990)
  4. Bosscher, P. J., Edil, T. B., and Kuraoka, S. (1997), "Design of highway embankments using tire chips", J. Geotech. Geoenviron. Eng., ASCE, 123(4), 295-304 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(295)
  5. Dias, R. P., Teixeira, J. A., Mota, M. G., and Yelshin, A. I. (2004), "Particulate binary mixtures: dependence of packing porosity on particle size ratio", Ind. Eng. Chem. Res. 43, 7912-7919 https://doi.org/10.1021/ie040048b
  6. Edil, T. B. and Bosscher, P. J. (1994), "Engineering properties of tire chips and soil mixtures", Geotech. Test. J., 17(4), 453-464 https://doi.org/10.1520/GTJ10306J
  7. Feng, Z. Y. and Sutter, K. G. (2000), "Dynamic properties of granulated rubber sand mixtures", Geotech. Test. J., 23(3), 338-344 https://doi.org/10.1520/GTJ11055J
  8. Fernandez, A. L. (2000), Tomographic imaging the state of stress. Ph.D. thesis, Civil Engineering, Georgia Institute of Technology, Atlanta
  9. Foose, G. J., Benson, C. H., and Bosscher, P. J. (1996), "Sand reinforced with shredded waste tires", J. Geotech. Geoenviron. Eng., 122(9), 760-767 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(760)
  10. Garga, V. K. and O'Shaughnessy, V. (2000), "Tire-reinforced earthfill. Part 1: Construction of a test fill, performance, and retaining wall design", Can. Geotech. J., 37(1), 75-96 https://doi.org/10.1139/cgj-37-1-75
  11. Ghazavi, M. and Sakhi, M. A. (2005), "Influence of optimized tire shreds on shear strength parameters of sand", Int. J. Geomechanics, 5(1), 58-65 https://doi.org/10.1061/(ASCE)1532-3641(2005)5:1(58)
  12. Guyon, E., Oger, L., and Plona, T. J. (1987), "Transport properties in sintered porous media composed of two particle sizes", Journal of Applied Physics D: Applied Physics, 20(12), 1637-1644 https://doi.org/10.1088/0022-3727/20/12/015
  13. Humphrey, D. N. and Eaton, R. A. (1995), "Field performance of tire chips as subgrade insulation for rural roads", Proc., 6th Int. Conf. on Low-Volume Roads, 2, Transportation Research Board, Washington D.C., 77-86
  14. Lee, J. H., Salgado R., Bernal, A., and Lovell, C. W. (1999), "Shredded tires and rubber-sand as lightweight backfill", J. Geotech. Geoenviron. Eng., ASCE, 125(2), 132-141 https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(132)
  15. Lee, J. S., Dodds, J., and Santamarina, J. C. (2007), "Behavior of rigid-soft particle mixtures", J. Materials in Civil Eng., 19(2), 179-184 https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(179)
  16. Liang, R. Y. and Lee, S. (1996), "Short-term and long-term aging behavior of rubber modified asphalt paving mixture", Recycled Rubber, Aggregate, and Filler in Asphalt paving mixtures, Transportation Research Board, No. 1530, Washington D.C., 18-24
  17. Masad, E., Taha, R., Ho., C., and Papagionnakis, T. (1996), "Engineering properties of tire/soil mixtures as a lightweight fill material", Geotech.l Test. J., 19(3). 297-304 https://doi.org/10.1520/GTJ10355J
  18. Moo-Young, H., Sellasie, K., Zeroka, D., and Sabnis, G. (2003), "Physical and chemical properties of recycled tire shreds for use in construction", J. Environ. Eng., 129(10), 921-929 https://doi.org/10.1061/(ASCE)0733-9372(2003)129:10(921)
  19. Pamukcu, S. and Akbulut, S. (2006), "Thermoelastic enhancement of damping of sand using synthetic ground rubber", J. Geotech. Geoenviron. Eng., 132(4), 501-510 https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(501)
  20. Poh, P. S. H. and Broms, B. B. (1995), "Slope stabilization using old rubber tires and geotextiles", Journal of Performance of Constructed Facilities, 9(1), 76-80 https://doi.org/10.1061/(ASCE)0887-3828(1995)9:1(76)
  21. Rowe, R. K. and Mclsaac, R. (2005), "Clogging of tire shreds and gravel permeated with landfill leachate", J. Geotech. Geoenviron. Eng., 131(6), 682-693 https://doi.org/10.1061/(ASCE)1090-0241(2005)131:6(682)
  22. Tweedie, J. J., Humphrey, D. N., and Sandford, T. C. (1998). "Tire shreds as lightweight retaining wall backfill: active conditions", J. Geotech. Geoenviron. Eng., ASCE, 124(11), 1061-1070 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1061)
  23. Vallejo, L. E. (2001), "Interpretation of the limits in shear strength in binary granular mixtures", Can. Geotech. J., 38(5), 1097-1104 https://doi.org/10.1139/cgj-38-5-1097
  24. Viggiani, G. and Atkinson, J. H. (1995), "Interpretation of bender element tests", Geotechnique, 45(1), 149-154 https://doi.org/10.1680/geot.1995.45.1.149
  25. Wu, W. Y., Benda, C., and Cauley, R. F. (1997), "Triaxial determination of shear strength of tire chips", J. Geotech. Geoenviron. Eng., 123(5), 479-482 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(479)
  26. Yang, S., Lohnes, R. A., and Kjartanson, B. H. (2002), "Mechanical properties of shredded tires", Geotech. Test. J., 25(1), 44-52 https://doi.org/10.1520/GTJ11078J
  27. Youwai, S. and Bergado, D. (2003), "Strength and deformation characteristics of shredded rubber tire-sand mixtures", Can. Geotech. J., 40(2), 254-264 https://doi.org/10.1139/t02-104
  28. Zornberg, J. G., Sitar, N., and Mitchell, J. K. (1998), "Limit equilibrium as a basis for design of geosynthetic reinforced slopes", J. Geotech. Geoenviron. Eng., 124(8), 684-698 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:8(684)
  29. Zornberg, J. G., Christoper, B. R., and LaRocque, C. J. (2004a), "Application of tire bales in transportation projects", Recycled Materials in Geotechnics, ASCE Geotechnical Special Publication No.127, ASCE, 42-60
  30. Zornberg, J. G., Cabral, A., and Viratjandr, C. (2004b), "Behaviour of Tire Shred-Soil Mixtures", Can. Geotech. J., 41(2), 227-241 https://doi.org/10.1139/t03-086