DOI QR코드

DOI QR Code

지반의 공간적 변동성을 고려한 확률론적 해석기법에 관한 연구

A Study on the Probabilistic Analysis Method Considering Spatial Variability of Soil Properties

  • 조성은 (한국수자원공사 수자원연구원) ;
  • 박형춘 (충남대학교 토목공학과)
  • 발행 : 2008.08.31

초록

지반공학 문제는 많은 불확실한 요인을 내포한다. 이러한 불확실성 중 일부는 해석 수행과정에 필요한 지반 물성의 변동성과 관련이 있다. 본 연구에서는 지반물성의 공간적 변동성을 고려한 확률론적 해석을 수행할 수 있는 절차를 제시하였다. 제시된 방법은 유한차분 해석기법과 랜덤필드 이론을 확률론적 해석기법에 통합하게 된다. 지정된 입력 확률분포함수와 자기상관함수를 따르는 non-Gaussian 랜덤필드를 생성하기 위하여 Karhunen-$Lo{\grave{e}}ve$ 전개법을 사용하였다. 생성된 랜덤필드를 이용하여 확률론적 응답을 얻기 위해 Monte Carlo 시뮬레이션을 수행하였다. 지반의 공간적인 변동성에 기인하는 불확실성의 효과를 연구하기 위하여 대상 기초의 침하량과 지지력에 대한 일련의 해석을 수행하였다. 해석결과는 지반공학 문제에서 불확실성을 고려할 수 있는 관점을 제시하며 확률론적 평가의 결과에 미치는 지반물성의 공간적 변동성의 중요성을 보여준다.

Geotechnical engineering problems are characterized by many sources of uncertainty. Some of these sources are connected to the uncertainties of soil properties involved in the analysis. In this paper, a numerical procedure for a probabilistic analysis that considers the spatial variability of soil properties is presented to study the response of spatially random soil. The approach integrates a commercial finite difference method and random field theory into the framework of a probabilistic analysis. Two-dimensional non-Gaussian random fields are generated based on a Karhunen-$Lo{\grave{e}}ve$ expansion in a fashion consistent with a specified marginal distribution function and an autocorrelation function. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses were performed to study the effects of uncertainty due to the spatial heterogeneity on the settlement and bearing capacity of a rough strip footing. The simulations provide insight into the application of uncertainty treatment to the geotechnical problem and show the importance of the spatial variability of soil properties with regard to the outcome of a probabilistic assessment.

키워드

참고문헌

  1. Alonso, E. E. (1976), "Risk Analysis of Slopes and Its Application to Slopes in Canadian Sensitive Clays", Geotechnique, Vol.26, pp.453-472 https://doi.org/10.1680/geot.1976.26.3.453
  2. Baecher, G. B., and Christian, J. T. (2003), Reliability and Statistics in Geotechnical Engineering, John Wiley & Sons
  3. Choi, S., Grandhi, R. V., and Canfield, R. A. (2007), Reliabilitybased Structural Design, Springer-Verlag, London
  4. DeGroot, D. J., and Baecher, G. B. (1993), "Estimating Autocovariance of In-situ Soil Properties", Journal of the Geotechnical Engineering, Vol.119, pp.147-166 https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(147)
  5. Elkateb, T., Chalaturnyk, R., and Robertson P. K. (2002), "An Overview of Soil Heterogeneity: Quantification and Implications on Geotechnical Field Problems", Canadian Geotechnical Journal, Vol.40, pp.1-15
  6. El-Ramly, H., Morgenstern, N. R., and Cruden, D. M. (2003), "Probabilistic Stability Analysis of a Tailings Dyke on Presheared Clay-shale", Canadian Geotechnical Journal, Vol.40, pp.192-208 https://doi.org/10.1139/t02-095
  7. Fenton, G. A., and Griffiths, D. V. (2003), "Bearing Capacity Prediction of Spatially Random $c-\phi$ Soils", Canadian Geotechnical Journal, Vol.40, pp.54-65 https://doi.org/10.1139/t02-086
  8. Ghanem, R. G., and Spanos, P. D. (1991), Stochastic Finite Element-A Spectral Approach, Springer Verlag, New York
  9. Ghiocel, D. M., and Ghanem, R. G. (2002), "Stochastic Finiteelement Analysis of Seismic Soil-structure Interaction", Journal of Engineering Mechanics, Vol.128, pp.66-77 https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(66)
  10. Griffiths, D. V., and Fenton, G. A. (2000), "Influence of Soil Strength Spatial Variability on the Stability of an Undrained Clay Slope by Finite Elements", Slope stability 2000, Geotechnical Special Publications No.101, ASCE, pp.184-193
  11. Griffths, D. V., and Fenton, G. A. (2001), "Bearing Capacity of Spatially Random Soil: The Undrained Clay Prandtl Problem Revisited", Geotechnique, Vol.51, pp.351-359 https://doi.org/10.1680/geot.51.4.351.39396
  12. Haldar, S, and Babu, G. L. S. (2007), "Effect of Soil Variability on the Response of Laterally Loaded Pile in Undrained Clay", Computers and Geotechnics, doi:10.1016/j.compgeo.2007.10.004
  13. Hsu, S. C., and Nelson, P. P. (2006), "Material Spatial Variability and Slope Stability for Weak Rock Masses", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.2, pp. 183-193 https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(183)
  14. ITASCA Consulting Group Inc. (2002), FLAC fast Lagrangian analysis of continua, Minneapolis, Minnesota, USA
  15. Kim, H. K., Narsilio, G. A., and Santamarina, J. C. (2007), "Emergent Phenomena in Spatially Varying Soils", Probabilistic Applications in Geotechnical Engineering, ASCE Geotechnical Special Publication No.170, doi:10.1061/40914(233)10
  16. Koutsourelakis, S., Prevost, J. H., and Deodatis, G. (2002), "Risk Assessment of an Interacting Structure-soil System due to Liquefaction", Earthquake Engineering Structural Dynamics, Vol.31, pp.851-79 https://doi.org/10.1002/eqe.125
  17. Lacasse, S, and Nadim, F. (1996), "Uncertainties in Characterizing Soil Properties", Uncertainty in the Geologic Environment: From theory to practice, (eds Shackleford, CD, Nelson, PP and Roth, MJS.), ASCE Geotechnical Special Publication No.58, pp.49-75
  18. Li, K. S., and Lumb, P. (1987), "Probabilistic Design of Slopes", Canadian Geotechnical Journal, Vol.24, pp.520-535 https://doi.org/10.1139/t87-068
  19. Liu, P. L., and Der Kiureghian, A. (1986), "Multivariate Distribution Models with Prescribed Marginals and Covariances", Probabilistic Engineering Mechanics, Vol.1, pp.105-112 https://doi.org/10.1016/0266-8920(86)90033-0
  20. Matthies, G., Brenner, C., Bucher, C., and Soares, C. (1997), "Uncertainties in Probabilistic Numerical Analysis of Structures and Solids-stochastic Finite Elements", Structural Safety, Vol.19, pp.283-336 https://doi.org/10.1016/S0167-4730(97)00013-1
  21. Paice, G. M., Griffiths, G. V., and Fenton, G. A. (1996), "Finite Element Modeling of Settlement on Spatially Random Soil", Journal of Geotechnical Engineering, Vol.122, pp.777-779 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(777)
  22. Popescu, R., Deodatis, G., and Nobahar, A. (2005), "Effects of Random Heterogeneity of Soil Properties on Bearing Capacity", Probabilistic Engineering Mechanics, Vol.20, pp.324-341 https://doi.org/10.1016/j.probengmech.2005.06.003
  23. Popescu, R., Prevost, J. H., and Deodatis, G. (1997), "Effects of Spatial Variability on Soil Liquefaction: Some Design Recommendations", Geotechnique, Vol.47, pp.1019-36 https://doi.org/10.1680/geot.1997.47.5.1019
  24. Rackwitz, R. (2000), "Reviewing Probabilistic Soils Modeling", Computers and Geotechnics, Vol.26, pp.199-223 https://doi.org/10.1016/S0266-352X(99)00039-7
  25. Spanos, P. D., and Ghanem, R. G. (1989), "Stochastic Finite Element Expansion for Random Media", Journal of Engineering Mechanics, Vol.115, pp.1035-1053 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:5(1035)
  26. Stein, M. L. (1987), "Large Sample Properties of Simulations Using Latin Hypercube Sampling", Technometrics, Vol.29, pp.143-151 https://doi.org/10.2307/1269769
  27. Sudret, B., and Der Kiureghian, A. (2000), Stochastic Finite Element Methods and Reliability: a State-of-the-art Report, Tech. Rep. Report No. UCB/SEMM-2000/08, Department of Civil & Environmental Engineering, University of California, Berkeley, Institute of Structural Engineering, Mechanics and Materials
  28. Terzaghi, K., and Peck, R. B. (1967), Soil Mechanics in Engineering Practice, 2nd Ed. New York: John Wiley and Sons
  29. Vanmarcke, E. H. (1977), "Probabilistic Modeling of Soil Profiles", Journal of Geotechnical Engineering (ASCE), Vol.103, pp.1227- 1246
  30. Vanmarcke, E. H. (1983), Random fields: Analysis and Synthesis, The MIT Press, Cambridge, MA
  31. Vořechovský, M. (2008), "Simulation of Simply Cross Correlated Random Fields by Series Expansion Methods", Structural Safety, Vol.30, pp.337-363 https://doi.org/10.1016/j.strusafe.2007.05.002