해저터널 시공중 문제구간의 수리적 특성이 막장의 안정성에 미치는 영향에 관한 수치해석적 연구

A Numerical Analysis: Effects of Hydraulic Characteristics of a Hazardous Zone on the Face Stability in Subsea Tunnelling

  • 홍은수 (한국지질자원연구원 지반안전연구부) ;
  • 박의섭 (한국지질자원연구원 지반안전연구부) ;
  • 신희순 (한국지질자원연구원 지반안전연구부) ;
  • 김형목 (한국지질자원연구원 지반안전연구부) ;
  • 류동우 (한국지질자원연구원 지반안전연구부)
  • 발행 : 2008.10.31

초록

지하수면하의 터널 굴착은 물로 인한 많은 지반공학적 문제가 나타나며, 해저터널의 경우 높은 투수성과 고수압을 나타내는 파쇄대 근처에서의 안전율 감소로 인한 침수사고를 유발될 수 있다. 이 연구에서는 유한한 폭의 투수성이 높은 구간(문제구간) 에서 터널 안전성에 대한 수압의 영향에 대하여 분석하였다. advance core 개념에 따라 막장전방의 가상 실린더에 작용하는 침투력을 모사 하였으며, 3차원 정상류 침투수 해석을 통하여 막장전방 지반의 수리적 거동에 주안점을 두고 침투력과 막장면의 안정성에 대한 문제구간의 영향을 분석하였다. 그 결과 막장면으로부터 터널의 막장면 안정성에 영향을 주는 가상 실린더의 경계면까지의 거리는 터널 반경의 약 5배 정도인 것으로 추정된다. 이 연구의 적용된 가정의 제한성에도 불구하고 문제구간의 위험성을 고려할 할 때 이 연구결과가 시사하는 바가 크다.

Tunnelling under water table induces many geotechnical problems because of groundwater. In subsea tunneling, reduction of face stability can induce flooding in the vicinity of a fracture zone characterized by high permeability and high water pressure. In this study, the effects of high water pressure on the stability of a tunnel face in a limited zone with high permeability(hazardous zone) are analyzed. On the basis of the 'advance core' concept, the seepage force acting on a hypothetical cylinder ahead of a tunnel face is modeled. This study focuses on the hydraulic behavior of the ground ahead of the tunnel face by three-dimensional steady-state seepage analyses. The impact of the hazardous zone on the seepage force and stability of the tunnel face are simulated and analyzed. In light of the analysis results, it is estimated that the distance from the tunnel face to the exterior boundary limit, which the seepage force significantly affects the stability of the tunnel face, of a hypothetical cylinder is approximately 5 times the tunnel radii. Despite the restrictive assumptions of this study, the results are highly indicative regarding the risks of hazardous zones.

키워드

참고문헌

  1. 홍은수,박의섭,신희순,박찬,김형목,2008,수평시추 방 식에 의한 해저터널 시공중의 막장 수압경감, 터널과 지 하공간, 한국암반공학회지, 제18권 제1호, 10-19
  2. Anagnostou, G., Kovari, K., 1996, Face stability conditions with earth-pressure-balanced shields, Tunneling and Underground Space Technology 11.2, 165-173 https://doi.org/10.1016/0886-7798(96)00017-X
  3. Baek, S.H., Kim, C.Y., Kim, K.Y., Hong, S.W., Moon, H.K., 2006, Numerical analysis on the effect of heterogeneous nature of rock masses on tunnel behavior, Tunneling Technology 8.2, 115-127
  4. Bilfinger, W., 2005, Design procedures for ground water loads on tunnel linings, http://www.ita-aites.org/cms/ ita-aites-home/publications/conferences-proceedings /conferences-proceeding-detail/datum/2008/07/06/sao-p aulo-2005-waterproofing.html
  5. Bobet, A., 2001, Analytical solutions for shallow tunnels in saturated ground, ASCE J. Eng. Mech. 12, 1258 -1266
  6. Buergi, C., Parriaux, A., Franciosi, G., Rey, J.-Ph., 1999, Cataclastic rocks in underground structures - terminology and impact on the feasibility of projects (Initial Results), Engineering Geology 51, 225-235 https://doi.org/10.1016/S0013-7952(97)00079-3
  7. El Tani, M., 2003, Circular tunnel in a semi-infinite aquifer, Tunneling and Underground Space Technology 18, 49-55 https://doi.org/10.1016/S0886-7798(02)00102-5
  8. Jeon, J.S., Martin, C.D., Chan, D.H., Kim, J.S., 2005, Predicting ground conditions ahead of the tunnel face by vector orientation analysis, Tunneling and Underground Space Technology 20, 344-355 https://doi.org/10.1016/j.tust.2005.01.002
  9. Leca, E., Dormieux, L., 1990, Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material, Geotechnique 40, 581-606 https://doi.org/10.1680/geot.1990.40.4.581
  10. Leca, E. Panet, M., 1988, Application du calcul a la rupture a la stabilite du front de Taille Dun tunnel, Revue Francaise de Geotechnique 40, 581-606
  11. Lee, I.M., Nam, S.W., 2001, The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels, Tunneling and Underground Space Technology 16, 31-40 https://doi.org/10.1016/S0886-7798(01)00028-1
  12. Lunardi, P., 2000, Design and construction of tunnels using the approach based on the analysis of controlled deformation in rocks and soils. Tunnels Tunn. Int. Special Suppl., 3-30
  13. Sausgruber, T., Brandner, R., 2003, The relevance of brittle fault zone in tunnel construction-Lower inn vally feeder line north of Brenner Base tunnel, Tyrol, Austria, Mitt. Osterr. Geol. Ges. 94, 157-172
  14. Schubert, W., Steindorfer, A., 1998, Advanced monitoring data evaluation and display for tunnels, Proc. Int. Symp. on Tunnels and Metropolises, Sao Paulo, vol 2, 1205 -1208
  15. Schweiger, H.F., Pottler, R.K., Steiner, H., 1991, Effect of seepage forces on the shotcrete lining of a large undersea cavern, Computer Method and Advances in Geomechanics, Rotterdam, 1503-1508
  16. Uehara, S., Shimamoto, T., 2006, Estimation of permeability structure of the median tectonic line fault zone in Ohshika-Mura, Nagano, Japan, by using laboratory test under high pressure, 4th Asian Rock Mechanics Symposium, Singapore, 314
  17. Wise, D.U., Dunn, D.E., Engelder, J.T, Geiser, R.A., Hatcher, R.D., Kish, S.A., Odom, A.L., Schamel, S., 1984, Fault-related rocks: suggestions for terminology, Geology 12, 391-394 https://doi.org/10.1130/0091-7613(1984)12<391:FRSFT>2.0.CO;2