Park, Bum-Jin;Lee, Hee-Bum;Rhee, Shin-Hyung;Bae, Jun-Hong;Lee, Kyung-Won;Jeong, Wang-Jo;An, Sang-Jun
Journal of computational fluids engineering
/
v.14
no.2
/
pp.9-18
/
2009
The cargo containment system (CCS) for ships carrying cryogenic fluid consists of at least two levels of barriers and insulation layers. It is because, even though there is a small amount of leak through the primary barrier, the liquid tight secondary barrier blocks further leakage of the cryogenic fluid. However, once the secondary barrier is damaged, it is highly possible that the leaked cryogenic fluid flows through the flat joint made of glass wool and reaches the inner hull of the ship. The primary objective of the present study is to investigate the influence of the damage extent in the secondary barrier on the amount of leaked cryogenic fluid reaching the inner hull and the temperature distribution there. Simulation results using a computational fluid dynamics tool were compared with the experimental data for the leaked cryogenic fluid flow and evaporation in the secondary insulation layer. The experimental and computational results suggest that, unless there is a massive leak, the cryogenic fluid mostly evaporates in the insulation layer and does not reach the inner hull in the state of liquid.
International Journal of Fluid Machinery and Systems
/
v.3
no.4
/
pp.324-331
/
2010
Cavitation in cryogenic fluids generates substantial thermal effects and strong variations in fluid properties, which in turn alter the cavity characteristics. In order to investigate the cavitation characteristics in cryogenic fluids, numerical simulations are conducted around an axisymmetric ogive in liquid nitrogen and hydrogen respectively. The modified Merkle cavitation model and energy equation which accounts for the influence of cavitation are used, and variable thermal properties of the fluid are updated with software. A good agreement between the numerical results and experimental data are obtained. The results show that vapor production in cavitation extracts the latent heat of evaporation from the surrounding liquid, which decreases the local temperature, and hence the local vapor pressure in the vicinity of cavity becomes lower. The cavitation characteristics in cryogenic fluids are obtained that the cavity seems frothy and the cavitation intense is lower. It is also found that when the fluid is operating close to its critical temperature, thermal effects of cavitation are more obviously in cryogenic fluids. The thermal effect on cavitation in liquid hydrogen is more distinctively compared with that in liquid nitrogen due to the changes of density ratio, vapour pressure gradient and other variable properties of the fluid.
A mixed working fluid has a potential to widen the operation temperature range of the thermosiphon. In this study, the thermosiphon using $N_2\;and\;CF_4$ mixture as the working fluid is fabricated and tested to verify its transient thermo hydraulic characteristic. A transparent pyrex glass tube was used for the thermosiphon itself and the vacuum chamber was also fabricated by glass to visualize the internal state of thermo siphon. Onset of condensation temperature was related to the partial pressure of $CF_4$. Two solidifications were observed and condensate temperature range of mixed working fluid was from 160K to 70.7K with $N_2$ 25% composition.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
2007.04a
/
pp.309-312
/
2007
The cryogenic fluid is the propellant for the liquid rocket engine. The design of space launcher vehicle is guided by minimum size and weight criteria, so the turbo pump solicits high impeller speed. Such high speed results in a zone of pressure drop below vapor pressure causing caivtation around inducer blades. The cryogenic fluid has different characters from isothermal fluid like water. The cryogenic fluid has very sensible thermodynamic properties and the phase change undergoes evaporative cooling. So, the developed code has to be modified cavitation modeling and it is added the energy equation for temperature sensitivity.
Journal of the Korean Society for Precision Engineering
/
v.28
no.10
/
pp.1210-1216
/
2011
The purpose of this study is to establish the analysis method for prediction of temperature during cryogenic heat treatment. Experimental cryogenic heat treatment is conducted to observe the phenomena such as boiling of fluid, ice layer on the material surface and to measure the temperature distribution of Al6061 tube. The CFD analysis considering the observed phenomena in the experiment is performed to predict the temperature distribution and convection heat transfer coefficient at each stage of cryogenic heat treatment, in which the boiling of fluid is considered as the multi-phase condition of vapour and liquid. The formation of ice layer on the tube surface is also modeled between material and fluid. The predicted results are in good agreement with the experimental ones. From the results, it is shown that the analysis method can predict the temperature distribution and convection heat transfer coefficient during cryogenic heat treatment.
Cryogenic pump test facility (CPTF) is designed and developed in KARI. Hydraulic and cavitation performance of pump and inducer in cryogenic environment can be measured. Working fluid is liquid nitrogen and operating temperature is $-197^{\circ}C$. Run tank, catch tank of liquid nitrogen and their pressurizing tank has been built and remote tank pressure control system are installed. Maximum power of driving motor is 320 kW and its maximum speed is 32000rpm. Cryogenic fluids and lubricating systems are effectively separated that long test times are acquired. Therefore hydraulic and cavitation performance can be measured accurately and effectively. Pre-cooling test of the facility was successfully accomplished. This facility will contribute greatly to the development of turbopump for KSLV.
A cryogenic test facility has been developed to perform inducer and pump tests using liquid nitrogen. Performance tests of a turbopump in the maximum 50ton-thrust class can be performed with cryogenic fluid in the facility which operates at a temperature around -196oC with the rotational speed up to 30,000rpm To verify the reliability of the cryogenic pump test facility, hydraulic performance tests of an inducer were accomplished, and their results were compared with the result from a water test. The results confirm the reliability of the cryogenic test facility, and it is expected to contribute for on-going development of a turbopump for liquid rocket engines.
Transactions of The Korea Fluid Power Systems Society
/
v.3
no.4
/
pp.8-13
/
2006
The high pressure cryogenic ball valve is used to transfer the liquefied natural gas which temperature is $-196^{\circ}C$, supplied pressure is $168kgf/cm^2$. In the present work, the temperature distribution and thermal deformation is calculated numerically. The CAR and CFD methods are useful to predict the thermal matter and the inner flow field of high pressure cryogenic ball valve. For this reason, to optimum design of the cryogenic ball valve, the theological behavior of the supplied LNG in a cryogenic valve has been studied. The governing equations are discredited and solved numerically by the finite-volume method and finite-element method. In this study, we designed the high pressure cryogenic ball valve that accomplishes zero leakage by elastic seal at normal temperature and metal seal at high temperature.
This paper describes numerical modeling of transcritical and supercritical fluid flows within a liquid propellant rocket engine. In the present paper, turbulence is modeled by standard $k-{\varepsilon}$ model. A conserved scalar approach in conjunction with multi-environment probability density function model is used to account for the turbulent mixing of real-fluids in the transcritical and supercritical region. The two real-fluid equations of state and dense-fluid correction schemes for mixtures are used to construct thermodynamic data library based on the conserved scalar. In this study, calculations are made on two cryogenic nitrogen jets under different chamber pressures. Sensitivity analysis for two different real-fluid equations of sate is particularly emphasized. Based on numerical results, precise structures of cryogenic nitrogen jets are discussed in detail. Numerical results show that the current real-fluid model can predict the essential features of the cryogenic liquid nitrogen jets.
Yubin Kim;Kihwan Kim;Seungcheol Ryu;Hojun Cha;Seokho Kim
Progress in Superconductivity and Cryogenics
/
v.26
no.1
/
pp.25-30
/
2024
High-temperature superconducting rotors offer advantages in terms of output-to-weight ratio and efficiency compared to conventional phase conduction motors or generators. The rotor can be cooled by conduction cooling, which attaches a cryocooler, and by refrigerant circulation, which uses circulating liquid or gas neon, helium and hydrogen. Recent work has focused on environmental issues and on high-temperature superconducting motors cooled with liquid hydrogen that can be combined with fuel cells. However, to ensure smooth supply and return of the cryogenic cooling fluid, a cryogenic rotational coupling between the rotating and stationary parts is necessary. Additionally, the development of a sealing structure to minimize fluid leakage applicable to the coupling is essential. This study describes the design and performance evaluation of a non-contact sealing method, specifically a labyrinth seal, which avoids power loss and heat load caused by friction in contact sealing structures. The seal design incorporates a spiral flow path to reduce leakage using centrifugal force, and computational fluid dynamics (CFD) simulations were conducted to analyze the flow path and rotational speed. A performance evaluation device was configured and employed to evaluate the designed seal. The results of this study will be used to develop a cryogenic rotational coupling with supply and return flow paths for cryogenic applications.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.