DOI QR코드

DOI QR Code

흰쥐에서 불가사리칼슘의 체내이용성에 대한 칼슘흡수증진물질의 첨가 효과

Effects of Supplemental Agents Enhancing Calcium Absorption on Bioavailability of Starfish Calcium in Rats

  • 문지영 (서울대학교 식품영양학과, 생활과학연구소) ;
  • 장수정 (서울대학교 식품영양학과, 생활과학연구소) ;
  • 박미나 (서울대학교 식품영양학과, 생활과학연구소) ;
  • 박희연 (국립수산과학원 생명공학연구소) ;
  • 이연숙 (서울대학교 식품영양학과, 생활과학연구소)
  • Moon, Ji-Young (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Jang, Soo-Jung (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Park, Mi-Na (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Park, Hee-Yeon (Biotechnology Research Center NFRDI) ;
  • Lee, Yeon-Sook (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • 발행 : 2007.07.30

초록

본 연구는 불가사리에서 추출한 칼슘의 체내 이용성 및 칼슘 흡수증진 물질 첨가가 불가사리 칼슘의 이용성에 미치는 영향을 검토함으로써 새로운 칼슘 급원으로서의 불가사리 칼슘의 유용성을 알아보고자, 동물실험을 수행하였다. 즉 3주령 된 암컷 흰쥐를 대상으로, 불가사리에서 추출한 칼슘에 칼슘흡수증진 물질로서 casein phosphopeptide(CPP;5.25%), citrate-malate(1.4%), isoflavone(0.01%)을 각각 첨가한 식이를 6주간 공급한 후, 불가사리 칼슘의 이용성에 미치는 효과를 알아보았다. 이 때 칼슘 수준은 0.35%로, 인 수준은 0.7%로 각각 고정시켰다. 희생을 통하여 혈청 칼슘과 인 농도 및 alkaline phosphatase(ALP) 활성, 칼슘과 인의 흡수율 및 보유율, 대퇴골의 칼슘 및 인 함량, 소장의 가용성 및 불용성 칼슘 함량을 측정하였다. 그 결과는 다음과 같다. 불가사리에서 추출한 칼슘에 칼슘흡수증진 물질을 첨가했을 경우, 성장 및 식이섭취량은 실험군 간에 차이가 없었다. 혈청 칼슘과 인 농도 및 ALP 활성은 실험군 간에 유의적인 차이가 없었다. 칼슘의 보유율과 겉보기 흡수율은 불가사리칼슘+CPP군과 불가사리칼슘+citrate-malate군이 높았다. 인의 보유율은 차이가 없었으나, 겉보기 흡수율은 불가사리칼슘+CPP군에서 높았다. 소장 내용물의 가용성 분획 중 칼슘 함량은 실험군 간 유의적인 차이가 없었다. 반면 불용성 분획의 칼슘 함량은 불가사리칼슘+CPP군, 불가사리칼슘+citrate-malate군 및 불가사리 칼슘+ISO군에서 유의적으로 낮았다. 식이로부터 유래된 장내 가용성 칼슘 함량은 불가사리칼슘+CPP군에서 가장 높았다. 대퇴골의 무게, 칼슘 및 인의 함량은 실험군 간에 유의적인 차이가 없었다. 이상의 결과에서 불가사리 칼슘은 흰쥐의 일반적인 성장 및 기능에 영향을 미치지 않으면서도 칼슘의 흡수율은 높아 새로운 칼슘급원으로서 이용가능성이 높음을 시사하였다. 그러나 대체로 골격 대사에는 영향을 미치지 못했다. 또한 칼슘흡수증진 물질을 첨가하였을 경우에 CPP와 citrate-malate가 불가사리칼슘의 흡수율을 높여, 불가사리칼슘에 CPP와 citrate-malate를 첨가할 경우 보다 좋은 효과가 기대된다.

This study was conducted to investigate the bioavailability of starfish calcium with substances enhancing calcium absorption. Three week-old young female rats (Sprague-Barley) were divided into 5 groups according to calcium sources and testing agents; calcium carbonate (C), starfish calcium (S), starfish calcium + casein phosphopeptide (S-CPP), starfish calcium+citrate-malate (S-CM), starfish calcium+isoflavone (S-ISO), and were fed experimental diets containing AIN-93G based Ca (0.35% w/w) diet with CPP, CM and ISO for 6 weeks. Blood, femur, urine and feces samples were collected. There was no significant difference among groups in terms of growth and food intake. Serum Ca concentrations were normal in all 5 groups. Serum P concentrations and ALP activities were not significantly different among groups. Ca absorption and retention were significantly increased both in S-CPP and S-CM groups compared to C group (p<0.05). p absorption was significantly higher in S-CPP group than in other groups. While the amount of soluble Ca of intestinal contents did not differ among groups, the amount of insoluble Ca was significantly lower in S-CPP, S-CM and S-ISO groups than in C and S groups. However, the weight, Ca and P concentrations of femur were not significantly different among groups. These results suggest that the addition of CPP and citrate-malate were more effective for enhancing the bioavailability, intestinal absorption and solubility of starfish calcium.

키워드

참고문헌

  1. Miller GD, Jarvis JK, McBean LD. 2001. The importance of meeting calcium needs with foods. J Am Coll Nutr 20(2 Suppl): 168S-185S https://doi.org/10.1080/07315724.2001.10719029
  2. Louie DS. 1996. Calcium and phosphorus in health and disease: Intestinal bioavailability and absorption of calcium CRC Press, Boca Raton. p 45
  3. Allen LH. 1982. Calcium bioavailability and absorption: a review. Am J Clin Nutr 35: 783-808 https://doi.org/10.1093/ajcn/35.4.783
  4. Greger JL, Gutkowski CM, Khazen RR. 1989. Interaction of lactose with calcium, magnesium and zinc in rats. J Nutr 119: 1691-1697 https://doi.org/10.1093/jn/119.11.1691
  5. Buchowski MS, Miller DD. 1991. Lactose, calcium source and age affect calcium bioavailability in rats. J Nutr 121: 1746-1754 https://doi.org/10.1093/jn/121.11.1746
  6. Lee YS, Noguchi T, Naito H. 1983. Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture: the role of casein phosphopeptides. Br J Nutr 49: 67-76 https://doi.org/10.1079/BJN19830012
  7. Sato R, Noguchi T, Naito H. 1986. Casein phosphopeptide (CPP) enhances calcium absorption from the ligand segment of rats small intestine. J Nutr Sci Vitaminol (Tokyo) 32: 67-76 https://doi.org/10.3177/jnsv.32.67
  8. Lee YS, Park G, Naito H. 1992. Supplemental effect of casein phosphopeptides (CPP) on the calcium balance of growing rats. Nippon Eiyo Shokuryo Gakkaishi 45: 333-338 https://doi.org/10.4327/jsnfs.45.333
  9. Lacour B, Tardivel S, Drueke T. 1997. Stimulation by citric acid of calcium and phosphorous bioavailability in rats fed a calcium-rich diet. Miner Electrolyte Metab 23: 79-87
  10. Arjmandi BH, Khalil DA, Hollis BW. 2000. Ipriflavone, a synthetic phytoestrogen, enhances intestinal calcium transport in vitro. Calcif Tissue Int 67: 225-229 https://doi.org/10.1007/s002230001123
  11. Lee YS, Moon JY, Jang SJ. 2005. Bioavailability of starfish calcium as a novel calcium source. Kor J Comm Liv Sci 16: 135-148
  12. Erba D, Ciappellano S, Testolin G. 2002. Effect of the ratio of casein phosphopeptides to calcium (w/w) on passive calcium transport in the distal small intestine of rats. Nutrition 18: 743-746 https://doi.org/10.1016/S0899-9007(02)00829-8
  13. Weaver CM, Martin BR, Costa NM, Saleeb FZ, Huth PJ. 2002. Absorption of calcium fumarate salts is equivalent to other calcium salts when measured in the rat model. J Agric Food Chem 50: 4974-4975 https://doi.org/10.1021/jf0200422
  14. Fiske CH, Subbarow Y. 1925. The colorimetric determination of phosphorus. J Biol Chem 66: 375-400
  15. Hyden S. 1956. A turbidimetric method for the determination of polyethylene glycols in biological materials. Lantbrukshoegsk Ann 22: 139-145
  16. Patwardhan UN, Pahuja DN, Samuel AM. 2001. Calcium bioavailability: an in vivo assessment. Nutr Res 21: 667-675 https://doi.org/10.1016/S0271-5317(01)00278-0
  17. Tsugawa N, Okano T, Higashino R, Kimura T, Oshio Y, Teraoka Y, Igarashi C, Ezawa I, Kobayashi T. 1995. Bioavailability of calcium from calcium carbonate, DL-calcium lactate, L-calcium lactate and powdered oyster shell calcium in vitamin D-deficient or -replete rats. Biol Pharm Bull 18: 677-682 https://doi.org/10.1248/bpb.18.677
  18. Tsuchita H, Goto T, Yonehara Y, Kuwata T. 1995. Calcium and phosphorus availability from casein phosphopeptides in male growing rats. Nutr Res 15: 1657-1667 https://doi.org/10.1016/0271-5317(95)02036-7
  19. Sato Y, Lee YS, Kimura S. 1998. Minimum effective dose of casein phosphopeptides (CPP) for enhancement of calcium absorption in growing rats. Int J Vitam Nutr Res 68: 335-340
  20. Mitruka BM, Rawnsley HM. 1981. Clinical biochemical and hematological reference values in normal experimental animals and normal humans. 2nd ed. Masson Publishing USA, Inc., New York. p 160-166
  21. Hamalainen MM. 1994. Bone repair in calcium deficient rats: comparison of xylitol+calcium carbonate with calcium carbonate, calcium lactate and calcium citrate on the repletion of calcium. J Nutr 124: 874-881
  22. Lee YS, Noguchi T, Naito H. 1980. Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet. Br J Nutr 43: 457-467 https://doi.org/10.1079/BJN19800113
  23. Berrocal R, Chanton S, Juillerat MA, Pavillard B, Scherz JC, Jost R. 1989. Tryptic phosphopeptides from whole casein. II. Physicochemical properties related to the solubilization of calcium. J Dairy Res 56: 335-341 https://doi.org/10.1017/S0022029900028776
  24. Heaney RP, Sato Y, Orimo H. 1994. Effect of casein phosphopeptide on absorbability of co-ingested calcium normal postmenopausal women. J Bone Miner Metab 12: 77-81 https://doi.org/10.1007/BF02383413
  25. Pak CY, Harvey JA, Hsu MC. 1987. Enhanced calcium bioavailability from a solubilized form of calcium citrate. J Clin Endocrinol Metab 65: 801-805 https://doi.org/10.1210/jcem-65-4-801
  26. Miller JZ, Smith DL, Flora L, Slemenda C, Jiang XY, Johnston CC Jr. 1988. Calcium absorption from calcium carbonate and a new form of calcium (CCM) in healthy male and female adolescents. Am J Clin Nutr 48: 1291- 1294 https://doi.org/10.1093/ajcn/48.5.1291
  27. Sakhaee K, Bhuket T, Adams-Huert B, Rao DS. 1999. Meta-analysis of calcium bioavailability: a comparison of calcium citrate with calcium carbonate. Am J Ther 6: 313-321 https://doi.org/10.1097/00045391-199911000-00005
  28. Nicar MJ, Pak CYC. 1985. Calcium availability from carbonate and calcium citrate. J Clin Endocrinol Metab 61:391-393 https://doi.org/10.1210/jcem-61-2-391
  29. Harvey JA, Kenny P, Poindexter J, Pak CY. 1990. Superior calcium absorption from calcium citrate than calcium carbonate using external forearm counting. J Am Coll Nutr 9: 583-587 https://doi.org/10.1080/07315724.1990.10720413
  30. Sheikh MS, Santa Ana CA, Nicar MJ, Schiller LR, Fordtran JS. 1987. Gastrointestinal absorption of calcium from milk and calcium salts. N Engl J Med 317: 532-536 https://doi.org/10.1056/NEJM198708273170903
  31. Heaney RP, Recker RR, Weaver CM. 1990. Absorbability of calcium sources: the limited role of solubility. Calcif Tissue Int 46: 300-304 https://doi.org/10.1007/BF02563819
  32. Arjmandi BH, Khalil DA, Hollis BW. 2000. Ipriflavone, a synthetic phytoestrogen, enhances intestinal calcium transport in vitro. Calcif Tissue Int 67: 225-229 https://doi.org/10.1007/s002230001123
  33. Arjmandi BH, Khalil DA, Hollis BW. 2002. Soy protein: its effects on intestinal calcium transport, serum vitamin D, and insulin-like growth factor-I in ovariectomized rats. Calcif Tissue Int 70: 483-487 https://doi.org/10.1007/s00223-001-1100-4
  34. Tsuchita H, Goto T, Shimizu T, Yonehara Y, Kuwata T. 1996. Dietary casein phosphopeptides prevent bone loss in aged ovariectomized rats. J Nutr 126: 86-93 https://doi.org/10.1093/jn/126.1.86
  35. Scholz-Ahrens KE, Kopra N, Barth CA. 1990. Effect of casein phosphopeptides on utilization of calcium in minipigs and vitamin-D-deficient rats. Z Ernahrungswiss 29: 295- 298 https://doi.org/10.1007/BF02023086

피인용 문헌

  1. Physiochemical Characteristics of Calcium Supplement Manufactured using Starfish vol.19, pp.5, 2012, https://doi.org/10.11002/kjfp.2012.19.5.727
  2. Effect of acidic electrolyzed water on the quality improvement of boiled-dried anchovy vol.21, pp.3, 2014, https://doi.org/10.11002/kjfp.2014.21.3.357