• Title/Summary/Keyword: Tetramethylorthosilicate

Search Result 3, Processing Time 0.021 seconds

Synthesis of Tetramethylorthosilicate (TMOS) and Silica Nanopowder from the Waste Silicon Sludge (폐(廢)실리콘슬러지로부터 TMOS 및 실리카 나노분말(粉末) 제조(製造))

  • Jang, Hee-Dong;Chang, Han-Kwon;Cho, Kuk;Kil, Dae-Sup
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.41-45
    • /
    • 2007
  • Tetramethylorthosilicate (TMOS) and silica nanopowder were synthesized from the waste silicon sludge containing 15% weight of silicon powder. TMOS, a precursor of silica nanopowder, was firstly prepared from the waste silicon sludge by catalytic chemical reaction. The maximum recovery of the TMOS was 100% after 5 hrs regardless of reaction temperature above $130^{\circ}C$. But the initial reaction rate became faster while the reaction temperature was higher than $150^{\circ}C$. As the methanol feedrate Increased from 0.8 ml/min to 1.4 ml/min, the yield of reaction was not varied after 3 hrs. Then, silica nanopowder was synthesized from the synthesized TMOS by flame spray pyrolysis. The morphology of as-prepared silica nanopowder was spherical and non-aggregated. The average particle diameters ranged from 9 nm to 30 nm and were in proportional to the precursor feed rate, and precursor concentration.

Synthesis and Characterization of Polyimide/silica Hybrid Films Derived from Silane Oligomer Containing Epoxy Group (에폭시 그룹을 함유한 실란 올리고머의 합성과 그로부터 유도된 폴리이미드/실리카 혼성 필름의 특성)

  • Lee, Jun Hyuk;Park, Yun Jun;Choi, Jong-Ho;Nam, Sang Yong;Kim, Sung Won;Hong, Young Taik
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.98-105
    • /
    • 2009
  • Poly(amic acid) was synthesized from the reaction of p-PDA/ODA and PMDA/BPDA and silane oligomer containing epoxy group was also synthesized from the reaction of tetramethylorthosilicate (TMOS) and glycidol. After hybridizing poly (amic acid) and silane oligomer, they were effectively converted into polyimide/silica hybrid films by thermal imidization process. As the silica contents in hybrid films increased, CTE values decreased from 17 ppm/K to 10 ppm/K and the tensile modulus increased, in spite of decreasing tensile strength. In addition, the peel test showed that the adhesion strength of hybrid film was enhanced from $0.43kg_f/cm$ to $1.02kg_f/cm$. Therefore, it could be concluded that the polyimide/silica hybrid film is effective to enhance adhesion strength for FCCL films.

  • PDF

Preparation and Optical Characterization of Mesoporous Silica Films with Different Pore Sizes

  • Bae, Jae-Young;Choi, Suk-Ho;Bae, Byeong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1562-1566
    • /
    • 2006
  • Mesoporous silica films with three different pore sizes were prepared by using cationic surfactant, non-ionic surfactant, or triblock copolymer as structure directing agents with tetramethylorthosilicate as silica source in order to control the pore size and wall thickness. They were synthesized by an evaporation-induced self-assembly process and spin-coated on Si wafer. Mesoporous silica films with three different pore sizes of 2.9, 4.6, and 6.6 nm and wall thickness ranging from $\sim$1 to $\sim$3 nm were prepared by using three different surfactants. These materials were optically transparent mesoporous silica films and crack free when thickness was less than 1 m m. The photoluminescence spectra found in the visible range were peaked at higher energy for smaller pore and thinner wall sized materials, consistent with the quantum confinement effect within the nano-sized walls of the silica pores.