• Title/Summary/Keyword: 실리카 나노분말

Search Result 26, Processing Time 0.029 seconds

Controlled synthesis of silica nanoparticles by a two-fluid nozzle flame reactor (이류체 노즐형 화염 반응기에 의한 실리카 나노분말 제조)

  • Chang, Han-Kwon;Jang, Hee-Dong;Chang, Won-Chul
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.308-313
    • /
    • 2005
  • 실리콘 잉고트의 절단공정에서 발생하는 폐실리콘 슬러지는 실리콘과 실리콘카바이드 등의 유가자원이 함유되어 있으며, 이 중 실리콘 분말은 실리콘 화합물인 알콕시실란 등을 제조하는데 원료로 사용이 가능하다. 본 연구에서는 폐실리콘 슬러지로부터 분리, 합성된 사에 톡시실란(TEOS)을 원료로 이용하여 실리카 나노분말을 합성하였다. TEOS 원료물질을 외부 혼합형 이류체 노즐을 이용하여 미세액적으로 분무하고 화염 속으로 도입시키고 화염열분해 반응을 진행시켜 실리카 나노분말을 합성하였다. 합성된 실리카 나노입자의 특성은 투과형 전자현미경 및 BET에 의하여 입자형상 및 평균 입자크기가 분석되었다. 주요 공정변수인 분산공기의 압력, 반응가스의 조성을 변화시켜 실험한 결과 평균크기가 $9{\sim}68nm$인 실리카 나노분말을 제조하였다.

  • PDF

Dispersion Characteristics of Silica Nanopowder in Aqueous Solution and Evaluation of Ni Composite Coating (실리카 나노 분말의 용액 내 분산 특성과 니켈 복합 도금에 관한 연구)

  • Park, So-Yeon;Jeong, Myeong-Won;Lee, Heung-Ryeol;Lee, Jae-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.67-67
    • /
    • 2011
  • 퍼멀로이의 내식성, 기계적 성질 등을 증가시키기 위해 복합도금을 실시하였다. 실리카 나노분말의 분산특성을 Zeta potential을 이용하여 측정하였으며 알칼리 도금액에서 퍼멀로이-실리카 복합도금을 실시하였다. 실리카 나노분말의 응집을 최소로 하기 위하여 전극의 RPM 변화, 첨가제와 초음파의 복합처리에 따른 변화, 전류 밀도 변화를 살펴보았다.

  • PDF

Synthesis of Tetramethylorthosilicate (TMOS) and Silica Nanopowder from the Waste Silicon Sludge (폐(廢)실리콘슬러지로부터 TMOS 및 실리카 나노분말(粉末) 제조(製造))

  • Jang, Hee-Dong;Chang, Han-Kwon;Cho, Kuk;Kil, Dae-Sup
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.41-45
    • /
    • 2007
  • Tetramethylorthosilicate (TMOS) and silica nanopowder were synthesized from the waste silicon sludge containing 15% weight of silicon powder. TMOS, a precursor of silica nanopowder, was firstly prepared from the waste silicon sludge by catalytic chemical reaction. The maximum recovery of the TMOS was 100% after 5 hrs regardless of reaction temperature above $130^{\circ}C$. But the initial reaction rate became faster while the reaction temperature was higher than $150^{\circ}C$. As the methanol feedrate Increased from 0.8 ml/min to 1.4 ml/min, the yield of reaction was not varied after 3 hrs. Then, silica nanopowder was synthesized from the synthesized TMOS by flame spray pyrolysis. The morphology of as-prepared silica nanopowder was spherical and non-aggregated. The average particle diameters ranged from 9 nm to 30 nm and were in proportional to the precursor feed rate, and precursor concentration.

Electrodeposition of Permalloy-Silica Composite Coating (전기도금법을 이용한 퍼멀로이-실리카 복합도금)

  • Jung, Myung-Won;Kim, Jong-Hoon;Lee, Heung-Yeol;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.83-88
    • /
    • 2010
  • The composite electroplating is accomplished by adding inert materials during the electroplating. Permalloy is the term for Ni-Fe alloy and it is used for industrial applications due to its high magnetic permeability. Microhardness for microdevices is enhanced after composite coating and it increases the life cycle. However, the hydroxyl group on the silica makes their surface susceptible to moisture and it causes the silica nanoparticles to be agglomerated in the aqueous solution. The agglomeration problem causes poor dispersion which eventually interrupts uniform deposition of silica nanoparticles. In this study, the dispersion of silica nanoparticles in the permalloy electroplated layer is reported with variation of additives and sonication time. Longer sonication period guaranteed better silica nanopowder dispersion and sonication period also influenced on composition of deposits. The amount of silica nanopowder codeposition and surface morphologies were influenced with variation of additives. In alkaline bath, smooth surface morphology and relatively high contents of silica nanopowder codeposition were obtained with addition of sodium lauryl sulfate.

Dispersion Method of Silica Nanopowders for Permalloy Composite Coating (퍼멀로이 합금도금을 위한 나노실리카 분산방법에 관한 연구)

  • Park, So-Yeon;Jung, Myung-Won;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.39-42
    • /
    • 2011
  • The composite electroplating is accomplished by adding inert materials during the electroplating. Permalloy is the term for Ni-Fe alloy and it is used for industrial applications due to its high magnetic permeability, surface wear resistance, corrosion protection. Microhardness for microdevices is enhanced after composite coating and it increases the life cycle. However, the hydroxyl group on the silica makes their surface susceptible to moisture and it causes the silica nanoparticles to be agglomerated in the aqueous solution. The agglomeration problem causes poor dispersion which eventually interrupts uniform deposition of silica nanoparticles. In this study, the dispersion of silica nanoparticles in the permalloy electroplated layer is reported with variation of additives and current densities. The optimum current density was 20 $mA/cm^2$ and the silica content was 9 at% at $50^{\circ}C$. The amount of silica nanopowder codeposition and surface morphologies were influenced with variation of additives. In the bath, smooth surface morphology and relatively high contents of silica nanopowder codeposition were obtained with addition of sodium lauryl sulfate.

Fabrication and Self-assembly of SiO2 nanopowder (SiO2 나노분말의 제조와 자기 조립)

  • 김명순;신동찬;이범규
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.241-241
    • /
    • 2003
  • 실리카 나노 분말의 제조공정과 얻어진 나노분말의 자기조립 현상에 대하여 연구하였다. 나노분말은 TEOS(Tetraethylorthosilicate)를 이용하여 Stober process로 단분산 콜로이드 SiO2를 제조하였다. 다양한 응용을 위해서 좁은 입도분포를 가지면서도 다양한 크기를 가지는 분말을 제조하고자 TEOS, NH4OH, 에탄올, 증류수 등의 절대량과 몰비를 변화시키면서 나노분말을 제조하였다. 실험조건에 대한 입도분포와 평균 입자크기의 변화는 핵생성 이론으로 설명될 수 있었다. 얻어진 나노분말을 이용하여 dipcoating과 electron plating방법으로 단층 혹은 여러층의 박막을 형성하였다. 자기배열에 기초한 두 가지 증착방법에서 박막층에 미치는 변수들의 영향을 주로 electorn plating 방법에 대하여 고찰하였다.

  • PDF

Synthesis of Silica Nanopowder via Change in Polymer Gel Concentration (고분자 젤 농도변화에 의한 실리카 나노분말의 합성)

  • Kim, Ji-Kyung;Lee, Sang-Geun;Kwon, Jae-Youl;Seo, Geum-Seok;Park, Seong-Soo;Park, Hee-Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.205-210
    • /
    • 2005
  • Nanoscale silica powder was synthesized from $SiO_2$ precursor solution using Tetraethyl Orthosilicate (TEOS) by polyacrylamide gel method. This process was of simplicity and provided ultrafine powders at relatively low calcination temperatures because polymer network could inhibit aggregation of $SiO_2$ powder. The particle size of Si02 powder was affected by the concentration of ammonium persulphate and N, N'-methylene-bis-acrylamide(BIS) in the gel precursor. The particle size decreased with increasing ammonium persulphate and was mininum size of 10 nm at 0.01 M. Also, the size decreased with increasing BIS concentration and was 5 nm at its concentration of 0.05 M.

Facile Preparation of Nanoporous Silica Aerogel Granules (나노다공성 실리카 에어로겔 과립의 간단 제조)

  • Kim, Nam Hyun;Hwang, Ha Soo;Park, In
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.209-213
    • /
    • 2011
  • Hydrophobic silica aerogel beads with low thermal conductivity and high porosity were prepared using a cost-effective sodium silicate as a silica source via an ambient-pressure drying process. Monolithic wet gels were first prepared by adjusting pH (~5) of a diluted sodium silicate solution. The silica aerogel beads (0.5~20 mm) were manufactured by breaking the wet gel monoliths under a simultaneous solvent exchange/surface modification process and an ambient-pressure drying process without using co-precursors or templates. Dried silica aerogel beads exhibit a comparable porosity ($593m^2/g$ of surface area, 34.9 nm of pore size, and $4.4cm^3/g$ of pore volume) to that of the aerogel powder prepared in the same conditions. Thermal conductivity of the silica aerogel beads (19.8 mW/mK at $20^{\circ}C$) is also identical to the aerogel powder.

Preparation of Silica Nanoparticles via Recycling of Silicon Sludge from Semiconductor Dicing Process and Electro-responsive Smart Fluid Application (반도체 다이싱 공정에서 발생하는 실리콘 슬러지를 재활용한 실리카 나노입자의 제조 및 전기감응형 유체로의 응용)

  • Yeon-Ryong Chu;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Chan-Gyo Kim;Minki Sa;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.15-25
    • /
    • 2023
  • In this study, silicon sludge from semiconductor dicing process is recycled to fabricate silica nanoparticles, which are applied as dispersing materials for electro-responsive (ER) smart fluid. In specific, metal impurities are removed from silicon sludge by acid washing to obtain the high-purity silicon powder. And then, silica nanoparticles are synthesized by facile hydrothermal method employing the silicon powder as reactant material. To control the size of silica nanoparticles, the reaction time of hydrothermal method is varied as 8, 15, 20, and 30 hours are applied to control the size of silica nanoparticles. Sizes of silica nanoparticles are increased proportionally to the reaction time owing to the increased numbers of hydrolysis and condensation reactions. As-synthesized silica nanoparticles are prepared as electro-responsive smart fluids by dispersing into silicon oil. Silica nanoparticles synthesized by 30 hours of hydrothermal reaction (SiO2-H30) exhibit the highest shear stress of 21.4 Pa under an applied electric field strength of 3.0kV mm-1. Such enhancement in ER performance of SiO2-H30 among various silica nanoparticles are attribute to the reinforcing effect originated from the mixed particle size, which allowing the formation of rigid chain-like structures. Accordingly, this study successfully propose a recycling method of silicon sludge to synthesize silica nanoparticles and their derived ER fluids, which may suggest new possibility to ESG management emphasizing the eco-friendliness.

Improvement of precision of three-dimensional ceramic microstructures employing silica nanoparticle-mixed precursor (나노 실리카분말의 충진효과를 이용한 극미세 3차원 세라믹 구조물 정밀화)

  • Lim T.W.;Park S.H.;Yang D.Y.;Pham Tuan Anh;Kim D.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.157-158
    • /
    • 2006
  • A novel nanofabrication process has been developed using two-photon crosslinking (TPC) for the fabrication of three-dimensional (3D) SiCN ceramic microstructures applicable to high functional 3D devices, which can be used in harsh working environments requiring a high temperature, a resistance to chemical corrosion, as well as tribological properties. After sequential processes: TPC and pyrolysis, 3D ceramic microstructures are obtained. However, large shrinkage due to low-ceramic yield during the pyrolysis is a serious problem to be solved in the precise fabrication of 3D ceramic microstructures. In this work, silica nanoparticles were employed as a filler to reduce the amount of shrinkage. In particular, the ceramic microstructures containing 40 wt% silica nanoparticles exhibited relatively isotropic shrinkage owing to its sliding free from the substrate during pyrolysis.

  • PDF