함수(含水) 염화(鹽化)마그네슘의 탈수(脫水) 특성(特性) 고찰(考察)

Dehydration characteristics of Magnesium Chloride Hydrate

  • 엄형춘 (과학기술연합대학원대학교) ;
  • 윤호성 (한국지질자원연구원 자원활용소재연구부) ;
  • 박형규 (한국지질자원연구원 자원활용소재연구부) ;
  • 김철주 (한국지질자원연구원 자원활용소재연구부)
  • 발행 : 2007.10.27

초록

마그네슘 용융염전해의 원료물질로 무수염화마그네슘이 일반적으로 사용된다. 그러나 함수염화마그네슘으로부터 무수염화마그네슘을 제조하기 위한 탈수과정은 가수분해가 동반되어 마그네슘 산화물들이 생성되므로, 공기 중에서 탈수를 통한 무수염화마그네슘 제조는 어렵다. 본 연구에서는 공기중에서와 염화수소 분위기 하에서 탈수 온도($200{\sim}600^{\circ}C$)에 따른 탈수특성을 비교하였다. 공기중에서는 탈수온도가 증가함에 따라 MgOHCl과 MgO가 생성되었지만, 염화수소 분위기하에서는 $300^{\circ}C$ 이상에서 무수염화마그네슘이 생성되었다. 염화수소 분위기에서 무수염화마그네슘은 약 $300^{\circ}C$에서 생성되기 시작하여 $500^{\circ}C$에서 결정화가 완전히 이루어지는 것을 확인하였다. 탈수실험에 사용된 염화수소는 모두 물에 용해시켜 염산으로 회수되었으며, 수용액 온도 $20^{\circ}C$에서 최대 41%의 염산을 회수할 수 있었다.

Anhydrous magnesium chloride, dehydration product from magnesium chloride hydrate is a general raw material to prepare electrolytic magnesium. However, the dehydration is not trivial and can be accompanied by hydrolysis leading to the production of undesirable hydroxy chloride compounds of magnesium. Therefore, dehydration process is actually the most complicated and hardest in the electrolysis methods for the production of magnesium. In this work, the influence of dehydrating temperature has been studied at the temperature range from $200^{\circ}C$ to $600^{\circ}C$ in air and HCl gas atmosphere individually to compare the results. With increasing of dehydration temperature MgOHCl and MgO were obtained in air. On the other hand, when the temperature was increased above $300^{\circ}C$ anhydrous magnesium chlorides were prepared in HCl gas atmosphere. Anhydrous magnesium chloride was formed at near $300^{\circ}C$ and completely crystallized at about $500^{\circ}C$. All of the HCl used as atmosphere gas in the dehydration was recovered as hydrochloric acid solution at a water vessel up to 41% by weight at $20^{\circ}C$.

키워드

참고문헌

  1. S. Kashani-Nejad and R. Harris, 2006: Oxides formed dyring the dehydration of magnesium chloride hexahydrate, Magnesium Technology in the Global Age, pp. 81-92
  2. Georges J. Kipouros and Donald R. Sadoway, 2001: A thermochemical analysis of the production of anhydrous $MgCl_2$, Journal of Light Metals 1, pp. 111-117 https://doi.org/10.1016/S1471-5317(01)00004-9
  3. Horst, E. Friedrich and Barry. L. Mordike, 2006: Magnesium Technology, p. 35
  4. Long Guangming and Ma Peihua, 2003: The reaction of $MgCl_2{\cdot}4H_2O $with $CCl_2F_2$, Thermochimica Acta 403, pp. 231-235 https://doi.org/10.1016/S0040-6031(03)00040-6
  5. S. Kashani-Nejad, K-W. Ng and R. Harris, 2004: Characterization of MgOHCl/MgO mixtures with infrared spectroscopy, Magnesium Technology, TMS, pp. 161-165
  6. The Merck Index, 1983: RAHWAY. N. J., U.S.A., Merck & CO., Inc, p. 696