• Title/Summary/Keyword: 함수염화마그네슘

Search Result 2, Processing Time 0.019 seconds

Preparation of Anhydrous Magnesium Chloride for a Fused Salt Electrolysis of Magnesium (마그네슘 용융염전해(溶融鹽電解)를 위한 무수(無水)염화마그네슘 제조(製造))

  • Eom, Hyoung-Choon;Park, Hyung-Kyu;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.16 no.1 s.75
    • /
    • pp.37-43
    • /
    • 2007
  • It was studied to prepare anhydrous magnesium chloride which could used as the raw material of a fused salt electrolysis of magnesium by dehydration of magnesium chloride hydrate. The dehydration was carried out in a tube furnace at $350{\sim}580^{\circ}C$. It was confirmed that magnesium chloride hydrate was oxdized to magnesia through the dehydration in ambient atmosphere, but anhydrous magnesium chloride could be obtained in hydrogen chloride gas atmosphere. And the crystallity of the product increased with increasing temperature and time of dehydration. All of the un-reacted hydrogen chloride gases which were generated during the dehydration in hydrogen chloride gas atmosphere could be recovered as hydrochloric solution, and it could be reused for chlorination of magnesia to prepare magnesium chloride hydrate.

Dehydration characteristics of Magnesium Chloride Hydrate (함수(含水) 염화(鹽化)마그네슘의 탈수(脫水) 특성(特性) 고찰(考察))

  • Eom, Hyoung-Choon;Yoon, Ho-Sung;Park, Hyung-Kyu;Kim, Chul-Joo
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.8-12
    • /
    • 2007
  • Anhydrous magnesium chloride, dehydration product from magnesium chloride hydrate is a general raw material to prepare electrolytic magnesium. However, the dehydration is not trivial and can be accompanied by hydrolysis leading to the production of undesirable hydroxy chloride compounds of magnesium. Therefore, dehydration process is actually the most complicated and hardest in the electrolysis methods for the production of magnesium. In this work, the influence of dehydrating temperature has been studied at the temperature range from $200^{\circ}C$ to $600^{\circ}C$ in air and HCl gas atmosphere individually to compare the results. With increasing of dehydration temperature MgOHCl and MgO were obtained in air. On the other hand, when the temperature was increased above $300^{\circ}C$ anhydrous magnesium chlorides were prepared in HCl gas atmosphere. Anhydrous magnesium chloride was formed at near $300^{\circ}C$ and completely crystallized at about $500^{\circ}C$. All of the HCl used as atmosphere gas in the dehydration was recovered as hydrochloric acid solution at a water vessel up to 41% by weight at $20^{\circ}C$.