Nano-size Patterning with a High Transmission C-shaped Aperture

고 투과 C 형 개구를 이용한 나노 크기 패턴 구현

  • Published : 2007.11.01

Abstract

We have designed a high transmission C-shaped aperture using finite differential time domain (FDTD) technique. The C-shaped aperture was fabricated in the aluminum thin film on a glass substrate using a focused ion beam (FIB) milling. Nano-size patterning was demonstrated with a vacuum contact device to keep tight contact between the Al mask and the photoresist. Using 405 nm laser, we recorded a 50 nm-size dot pattern on the photoresist with the aperture and analyzed the spot size dependent on the dose illuminated on the aperture.

Keywords

References

  1. Sheats, J. R. and Smith, B. W., 'Microlithography science and technology,' Marcel Dekker, INC., pp. 8, 1998
  2. Bjorkholm, J. E., 'EUV lithography - The successor to optical lithography?,' Intel Technology Journal, Vol. 2, No.3, pp. 1-8, 1998
  3. Tseng, A. A., Chen, K., Chen, C. D. and Ma, K. J., 'Electron beam lithography in nanoscale fabricatior recent development,' IEEE Transactions on Electronics Packaging Manufacturing, Vol. 26, No.2, pp. 141-149, 2003 https://doi.org/10.1109/TEPM.2003.817714
  4. Chou, S. Y., Krauss, P. R. and Renstrom, P. J., 'Imprint of sub-25nm vias and trenches in polymers,' Appl. Phys. Lett., Vol. 67, No. 21, pp. 3114-3116, 1995 https://doi.org/10.1063/1.114851
  5. Dryakhlushin, V. F., Klimov, A. Y., Rogov, V. V. and Vostokov, N. V., 'Method of the near-field optical nanolithography using tapered optical fiber,' Proc. 5th Int.'l Conf. on Transparent Optical Networks, ICTON 2003, Vol. 1, pp. 303-306, 2003
  6. Lin, Y., Hong, M. H., Wang, W. J., Law, Y. Z. and Chong, T. C., 'Lithography in UV photoresist using NSOM,' Proc. of SPIE, Vol. 5662, pp. 77-82, 2004
  7. Bethe, H. A., 'Theory of diffraction by small holes,' Phys. Rev., Vol. 66, No. 7-8, pp. 163-182, 1944 https://doi.org/10.1103/PhysRev.66.163
  8. Shi, X., Thornton, R. L. and Hesselink, L., 'A Nano-aperture with 1000X Power Throughput Enhancement for VSAL,' Proc. SPIE, Vol. 4342, pp. 320-327, 2002
  9. Jin, E. X. and Xu, X., 'Enhancement of optical transmission through planar nano-apertures in a metal film,' Proc. IMECE2003, No. IMECE2003-55235, pp. 1-6, 2003
  10. Eom, G. S., Yang, D., Lee, E., Park, S., Lee, Y. and Hahn, J. W., 'Wave propagation characteristics of a figure-eight shaped nanoaperture,' J. Appl. Phys., Vol. 101, Issue 10, 103101, 2007 https://doi.org/10.1063/1.2732412
  11. Wang, L., Jim, E. X., Uppuluri, S. M. and Xu, X., 'Contact optical nanolithography using nanoscale Cshaped apertures,' Opt. Express, Vol. 14, No. 21, pp. 9902-9908, 2006 https://doi.org/10.1364/OE.14.009902
  12. Xu, X., Jin, E. X., Wang, L. and Uppuluri, S., 'Design, fabrication, and characterization of nanometer-scale ridged aperture optical antennae,' Proc. of SPIE, Vol. 6106, 61061J, 2006
  13. Wang, L., Uppuluri, S. M., Jin, E. X. and Xu, X., 'Nanolithography using high transmission nanoscale bowtie apertures,' Nano Lett., Vol. 6, No.3, pp. 361-364, 2006 https://doi.org/10.1021/nl052371p
  14. Park, S. and Hahn, J. W., 'Design of a high-transmission C-shaped nano-aperture in a perfectly electric conductor film,' J. KSPE, Vol. 23, No. 6, pp. 160-165, 2006
  15. Tanaka, K. and Tanaka, M., 'Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,' Opt. Commun., Vol. 233, Issues 4-6, pp. 231-244, 2004 https://doi.org/10.1016/j.optcom.2004.01.028
  16. Fox, M., 'Optical Properties of Solids,' Oxford University Press, 2001
  17. Rakic, A. D., Djurisic, A. B., Elazar, J. M. and Majewski, M. L., 'Optical properties of metallic films for vertical-caX vity optoelectronic devices,' Appl. Opt., Vol. 37, No. 22, pp. 5271-5283, 1998 https://doi.org/10.1364/AO.37.005271
  18. Vial, A., Grimault, A. S., Macias, D., Barchiesi, D. and Chapelle, M. L., 'Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,' Phys. Rev. B, Vol. 71, No. '8, 085416, 2005 https://doi.org/10.1103/PhysRevB.71.085416
  19. Johnson, P. B. and Christy, R. W., 'Optical constants for noble metals,' Phys. Rev. B, Vol. 6, No. 12, pp. 4370-4379, 1972 https://doi.org/10.1103/PhysRevB.6.4370
  20. Taflove, A. and Hagness, S. C., 'Computational electrodynamics: the finite-difference time-domain method,' Artech House Publishers, pp. 35-142, 2000
  21. Commercial FDTD program - www.optiwave.com
  22. Jin, E. X. and Xu, X., 'Finitte-difference time-domain studies on optical transmission through planar nanoapertures in a metal film,' Jpn. J. Appl. Phys., Vol. 43, No.1, pp. 407-417, 2004 https://doi.org/10.1143/JJAP.43.407
  23. Xu, T., Wang, J., Sun, L., Xu, J. and Tian, Q., 'Investigation of the near-field distribution at novel nanometric aperture laser,' IUMRS-ICEM 2002, pp. 501-506, 2002
  24. Sheats, J. R. and Smith, B. W., 'Microlithography science and technology,' Marcel Dekker, INC., pp. 535-537, 1998