A Culture-Based Study of the Bacterial Communities within the Guts of Nine Longicorn Beetle Species and their Exo-enzyme Producing Properties for Degrading Xylan and Pectin

  • Park, Doo-Sang (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hyun-Woo (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeong, Won-Jin (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hyang-Mi (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Ho-Yong (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Bae, Kyung-Sook (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2007.10.30

Abstract

In this study, bacterial communities within the guts of several longicorn beetles were investigated by a culture-dependent method. A total of 142 bacterial strains were isolated from nine species of longicorn beetle, including adults and larvae. A comparison of their partial 16S rRNA gene sequences showed that most of the bacteria constituting the gut communities can typically be found in soil, plants and the intestines of animals, and approximately 10% were proposed as unreported. Phylogenetic analysis demonstrated that the bacterial species comprised 7 phyla, and approximately half were Gammaproteobacteria. Actinobacteria were the second most populous group (19%), followed by Firmicutes (13%) and Alphaproteobacteria (11%). Betaproteobacteria, Flavobacteria, and Acidobacteria were minor constituents. The taxonomic compositions of the isolates were variable according to the species of longicorn beetle. Particularly, an abundance of Actinobacteria existed in Moechotypa diphysis and Mesosa hirsute, which eat broadleaf trees; however, no Actinobacteria were isolated from Corymbia rubra and Monochamus alternatus, which are needle-leaf eaters. Considerable proportions of xylanase and pectinase producing bacteria in the guts of the longicorn beetles implied that the bacteria may play an important role in the digestion of woody diets. Actinobacteria and Gammaproteobacteria were the dominant xylanase producers in the guts of the beetles.

Keywords

References

  1. Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Amann, R.I., W. Ludwig, and K.H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169
  3. Avigad, G. and Y. Milner. 1967. Turbidimetric assay for pectinase activity. Isr. J. Chem. 5, 175-180 https://doi.org/10.1002/ijch.196700032
  4. Brauman, A., J. Dore, P. Eggleton, D. Bignell, J.A. Breznak, and M.D. Kane. 2001. Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol. Ecol. 35, 27-36 https://doi.org/10.1111/j.1574-6941.2001.tb00785.x
  5. Breznak, J.A. 1982. Intestinal microbiota of termites and other xylophagous insects. Annu. Rev. Microbiol. 36, 323-343 https://doi.org/10.1146/annurev.mi.36.100182.001543
  6. Broderick, N.A., K.F. Raffa, R.M. Goodman, and J. Handelsman. 2004. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293-300 https://doi.org/10.1128/AEM.70.1.293-300.2004
  7. Brune, A. and M. Friedrich. 2000. Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbiol. 3, 263-269 https://doi.org/10.1016/S1369-5274(00)00087-4
  8. Chen, D.Q. and A.H. Purcell. 1997. Occurrence and transmission of facultative endosymbionts in aphids. Curr. Microbiol. 34, 220-225 https://doi.org/10.1007/s002849900172
  9. Chun, J. 1995. Computer-assisted classification and identification of actinomycetes, Ph. D. thesis. University of Newcastle, Newcastle upon Tyne, UK
  10. Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequence. Int. J. Syst. Evol. Microbiol. in press
  11. Cleveland, L.R. 1923. Symbiosis between termites and their intestinal protozoa. Proc. Natl. Acad. Sci. USA 9, 424-428
  12. Dillon, R.J. and V.M. Dillon. 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49, 71-92 https://doi.org/10.1146/annurev.ento.49.061802.123416
  13. Egert, M., B. Wagner, T. Lemke, A. Brune, and M.W. Friedrich. 2003. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 69, 6659-6668 https://doi.org/10.1128/AEM.69.11.6659-6668.2003
  14. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootsrap. Evolution 39, 783-791 https://doi.org/10.2307/2408678
  15. Friedrich, M.W., D. Schmitt-Wagner, T. Lueders, and A. Brune. 2001. Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl. Environ. Microbiol. 67, 4880-4890 https://doi.org/10.1128/AEM.67.10.4880-4890.2001
  16. Girard, C. and L. Jouanin. 1999. Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle, Phaedon cochleariae. Insect Biochem. Mol. Biol. 29, 1129-1142 https://doi.org/10.1016/S0965-1748(99)00104-6
  17. Heo, S., J. Kwak, H.W. Oh, D.S. Park, K.S. Bae, D.H. Shin, and H.Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16, 1753-1759
  18. Hugenholtz, P., B.M. Goebel, and N.R. Pace. 1998. Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765-4774 (Erratum, 180, 6793)
  19. Hugenholtz, P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biology 3, 1-8
  20. Kim, J.I. 2002. A tentative list of Korean Coleoptera (Insecta), containing a species of newly recorded family. J. Kor. Biota 7, 225-261
  21. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120 https://doi.org/10.1007/BF01731581
  22. Kinya, K., S. Kozaki, and M. Sakuranaga. 1998. Degradation of lignin compounds by bacteria from termite guts Biotechnol. Lett. 20, 459-462 https://doi.org/10.1023/A:1005432027603
  23. Kwak, J., K. Lee, D.H. Shin, J.S. Maeng, D.S. Park, H.W. Oh, K.S. Bae, and H.Y. Park. 2007. Biochemical and genetic characterization of an extracellular metalloprotease produced from Serratia proteamaculans. J. Microbiol. Biotechnol. 17, 761-768
  24. Lane, D.J. 1991. 16S/23S rRNA sequencing. In E. Stackebrandt and M. Goodfellow, Nucleic acid techniques in bacterial systematics. Wiley, New York, USA
  25. Lee, G.E., C.H. Kim, H.J. Kwon, J. Kwak, D.H. Shin, D.S. Park, K.S. Bae, and H.Y. Park. 2004a. Biochemical characterization of an extracellular protease in Serratia proteomaculans isolated from a spider. Kor. J. Microbiol. 40, 269-274
  26. Lee, S.J., S.R. Kim, H.J. Yoon, I. Kim, K.S. Lee, Y.H. Je, S.M. Lee, S.J. Seo, H. Dae Sohn, and B.R. Jin. 2004b. cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 107-116 https://doi.org/10.1016/j.cbpc.2004.06.015
  27. Lee, S.M. 1987. The longicorn beetles of Korean peninsula. National Science Museum, Seoul, Republic of Korea
  28. Lemke, T., U. Stingl, M. Egert, M.W. Friedrich, and A. Brune. 2003. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 69, 6650-6658 https://doi.org/10.1128/AEM.69.11.6650-6658.2003
  29. Lilburn, T.G., K.S. Kim, N.E. Ostrom, K.R. Byzek, J.R. Leadbetter, and J.A. Breznak. 2001. Nitrogen fixation by symbiotic and free-living spirochetes. Science 292, 2495-2498 https://doi.org/10.1126/science.1060281
  30. Lilburn, T.G., T.M. Schmidt, and J.A. Breznak. 1999. Phylogenetic diversity of termite gut spirochaetes. Environ. Microbiol. 1, 331-345 https://doi.org/10.1046/j.1462-2920.1999.00043.x
  31. Ohkuma, M. 2003. Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl. Microbiol. Biotechnol. 61, 1-9 https://doi.org/10.1007/s00253-002-1189-z
  32. Park, D.S., H.W. Oh, H. Kim, S.Y. Heo, N. Kim, K.Y. Seol, and H.Y. Park. 2007. Screening of bacteria producing lipase from insect gut: isolation and characterization of a strain, Burkholderia sp. HY-10 producing lipase. Kor. J. Appl. Entomol. 46, 131-139 https://doi.org/10.5656/KSAE.2007.46.1.131
  33. Rondon, M.R., R.M. Goodman, and J. Handelsman. 1999. The Earth's bounty: assessing and accessing soil microbial diversity. Trends Biotechnol. 17, 403-409 https://doi.org/10.1016/S0167-7799(99)01352-9
  34. Skipper, N., M. Sutherland, R.M. Davies, D. Kilburn, R. Miller, A. Warren, and R. Wong. 1985. Secretion of a bacterial cellulase by yeast. Science 230, 958 https://doi.org/10.1126/science.230.4728.958
  35. Slaytor, M., A. Sugimoto, J. Azuma, K. Murashima, and T. Inoue. 1997. Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J. Insect. Physiol. 43, 235-242 https://doi.org/10.1016/S0022-1910(96)00097-2
  36. Suh, S.O., C.J. Marshall, J.V. McHugh, and M. Blackwell. 2003. Wood ingestion by passalid beetles in the presence of xylosefermenting gut yeasts. Mol. Ecol. 12, 3137-3145 https://doi.org/10.1046/j.1365-294X.2003.01973.x
  37. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  38. Tokuda, G., N. Lo, H. Watanabe, M. Slaytor, T. Matsumoto, and H. Noda. 1999. Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim. Biophys. Acta 1447, 146-59 https://doi.org/10.1016/S0167-4781(99)00169-4
  39. Watanabe, H., H. Noda, G. Tokuda, and N. Lo. 1998. A cellulase gene of termite origin. Nature 394, 330-331 https://doi.org/10.1038/28527
  40. Zhou, X., J.A. Smith, F.M. Oi, P.G. Koehler, G.W. Bennett, and M.E. Scharf. 2007. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395, 29-39 https://doi.org/10.1016/j.gene.2007.01.004