• Title/Summary/Keyword: culture-based isolation

Search Result 204, Processing Time 0.026 seconds

Endolichenic Fungal Community Analysis by Pure Culture Isolation and Metabarcoding: A Case Study of Parmotrema tinctorum

  • Yang, Ji Ho;Oh, Seung-Yoon;Kim, Wonyong;Hur, Jae-Seoun
    • Mycobiology
    • /
    • v.50 no.1
    • /
    • pp.55-65
    • /
    • 2022
  • Lichen is a symbiotic mutualism of mycobiont and photobiont that harbors diverse organisms including endolichenic fungi (ELF). Despite the taxonomic and ecological significance of ELF, no comparative investigation of an ELF community involving isolation of a pure culture and high-throughput sequencing has been conducted. Thus, we analyzed the ELF community in Parmotrema tinctorum by culture and metabarcoding. Alpha diversity of the ELF community was notably greater in metabarcoding than in culture-based analysis. Taxonomic proportions of the ELF community estimated by metabarcoding and by culture analyses showed remarkable differences: Sordariomycetes was the most dominant fungal class in culture-based analysis, while Dothideomycetes was the most abundant in metabarcoding analysis. Thirty-seven operational taxonomic units (OTUs) were commonly observed by culture-and metabarcoding-based analyses but relative abundances differed: most of common OTUs were underrepresented in metabarcoding. The ELF community differed in lichen segments and thalli in metabarcoding analysis. Dissimilarity of ELF community intra lichen thallus increased with thallus segment distance; inter-thallus ELF community dissimilarity was significantly greater than intra-thallus ELF community dissimilarity. Finally, we tested how many fungal sequence reads would be needed to ELF diversity with relationship assays between numbers of lichen segments and saturation patterns of OTU richness and sample coverage. At least 6000 sequence reads per lichen thallus were sufficient for prediction of overall ELF community diversity and 50,000 reads per thallus were enough to observe rare taxa of ELF.

Trends in the Isolation Rates and Species Distribution of Mycobacteria from 2014 to 2021 at Referral Clinical Laboratories in South Korea

  • Tae Soung Kim;Ga Yeon Kim;Young Ki Lee;Jae Kyung Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.260-267
    • /
    • 2023
  • We aimed to investigate the proportions of MTB- and NTM-positive tests and the distribution patterns of species isolated by contracted testing agencies in South Korea. Respiratory specimens submitted to contracted testing agencies in South Korea for AFB culture from January 2014 to December 2021 were included (533,713 specimens in total). Trends based on MTB and NTM detection, patient sex and age, culture medium type, and testing year were analyzed. MTB and NTM positive detection increased in the patients. The average ages of MTB- and NTM-positive patients increased in those aged ≥61 years. For solid culture, the MTB detection rate decreased from 5.9% in 2014 to 3.3% in 2018 and increased to 4.7% in 2021; the NTM detection rate increased from 2.1% in 2014 to 3.4% in 2018 and 3.7% in 2021. For liquid culture, the MTB detection rate decreased from 8.3% in 2014 to 5.5% in 2018 and increased to 6.0% in 2021; the NTM detection rate increased from 3.5% in 2014 to 5.5% in 2018 and decreased to 5.3% in 2021. An isolation ratio reversal between MTB and NTM was observed in 2018. In this study, we provide information on mycobacterial isolation rates and species distributions using AFB culture test results from Korea's referral laboratories. Increased MTB- and NTM-isolation rates were observed in individuals aged ≥60 years, indicating the need for regular testing and focused management for them. Expanding liquid culture applications, which show higher positivity rates than solid culture methods, is necessary.

Pure Isolation, Identification and Culture Characteristics of Ethylene Glycol Degrading Bacteria (Ethylene Glycol 분해균주의 순수분리.동전 및 배양특성)

  • 류원률;최장승;주무환
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.518-523
    • /
    • 1998
  • A large quantity of ethylene glycol(EG) is remained in the effluent after pretreating polyester weight-loss wastewater physicochemically in the fist stage and must be treated biologically in the second stage. Therefore, an excellent EG-utilizing bacteria strain was isolated from the natural system and the optimal culture conditions of the strain were investigated. The optimal culture conditions of temperature, pH, and nitrogen source were found to be 35$^{\circ}C$, 7.5 and ammonium chloride, respectively, when CODCr removal efficiency was more than 90%. The growth of stains and EG removal efficiency was slightly improved by adding elements such as niacin and biotin. With increasing inoculation size in a batch culture, the removal efficiency of EG was conspicuously increased. Growth rate was inhibited when the initial concentration of EG was more then 30g/L. The strain was identified as Pseudomonas sp. based on morphological and biological characteristics and named as Pseudomonas sp. EG1.

  • PDF

Physiological and Molecular Characterization of Cephaleuros virescens Occurring in Mango Trees

  • Vasconcelos, Camila Vilela;Pereira, Fabiola Teodoro;Duarte, Elizabeth Amelia Alves;de Oliveira, Thiago Alves Santos;Peixoto, Nei;Carvalho, Daniel Diego Costa
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.157-162
    • /
    • 2018
  • The objective of this work was to accomplish the isolation, molecular identification and characterizing the physiology of the causal agent of the algal spot in mango trees. For this purpose, the pathogen growth was assessed in different culture media, with subsequent observation and measurements of the filamentous cells. The molecular identification was made using mycelium obtained from leaf lesions and pure algae colonies grown in culture medium. Descriptions based on DNA sequencing indicated that the algae is Cephaleuros virescens. The algae must be isolated primarily in liquid medium for further pricking into agar medium. The highest mycelial growth average in Petri dishes occurred when the algae were grown in Trebouxia and BBM. Trebouxia enabled larger cells in the filamentous cells when compared to other culture media.

Isolation and In vitro Culture of Pig Spermatogonial Stem Cell

  • Han, Su Young;Gupta, Mukesh Kumar;Uhm, Sang Jun;Lee, Hoon Taek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.187-193
    • /
    • 2009
  • The present study identified the favorable conditions for isolation, enrichment and in vitro culture of highly purified, undifferentiated pig spermatogonial stem cell (SSC) lines that proliferate for long periods of time in culture. The colonies displayed morphology similar to miceSSC and were positive for markers of SSC (PGP9.5), proliferating germ cell (PigVASA), pre-meiotic germ cell (DAZL) and pluripotency (OCT4, SSEA-1, NANOG, and SOX2) based on immuno-cytochemistry and RT-PCR. The purity of these colonies was confirmed by negative expression of markers for sertoli cell (GATA4 and SOX9), peritubular myoid cell (${\alpha}$-SMA), differentiating spermatogonial and germ cells (c-KIT). The colonies could be maintained with undifferentiated morphology for more than two months and passaged more than 8 times with doubling time between 6-7 days. Taken together, we conclude that pigSSC could be successfully isolated and cultured in vitro and they possess characteristics similar to miceSSC.

Microspore Division and Plant Regeneration from Shed Pollen Culture in Rice

  • Kim, Hyun-Soon;Kang, Hyeon-Jung;Lee, Young-Tae;Lee, Seung-Yeob;Nam, Jeong-Kwon;Kim, Tae-Soo;Rha, Eui-Shik;Jin, Il-Doo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.1
    • /
    • pp.62-67
    • /
    • 2002
  • An efficient system of rice microspore culture could contribute to the production of genetically modified rice. The microspores were isolated by mechanical or shed methods. The number of microspores per 100 anthers isolated at uninucleate stage was higher than (or similar to) those at binucleate stage in isolation method with pestle or spatular, but microspore divisions were not easily observed on both stages. On the other hand, pollen division in shed pollen culture was observed more frequently at uninuclear than at binuclear stage. Cold pretreatment at 1$0^{\circ}C$ for 10 days resulted in the best multicellular division to produce microcalli at 12.5% efficiency in shed microspores. Heat shock at 33$^{\circ}C$ for one hour before or after pollen shedding enhanced cell division and callus formation. Out of twelve green regenerants, two were haploids and ten were diploids based on the chromosome analysis of root tips. The size of stoma was 12$^{m}$ m in haploids and 15 ${\mu}{\textrm}{m}$ in diploids determined by scanning electron microscope (SEM).

Isolation and Characterization of Novel Alginate-Degrading Pseudoalteromonas sp. Y-4

  • Cho, Hyeon-Ah;Kim, Hyun-Woo;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.259-263
    • /
    • 2012
  • To isolate an alginate-degrading bacterium, we conducted a single colony isolation using a solid medium containing alginate as the sole carbon source. A marine bacterium Y-4 capable of degrading alginate was isolated from seawater. The strain was identified to be Pseudoalteromonas sp., based on morphological, biochemical, 16S rDNA homology, and phylogenetic analyses. Moreover, Pseudoalteromonas sp. Y-4 exhibited alginate lyase activity in the presence of 4% alginate even though many known alginate-degrading bacteria degrade in the range of 0.5-1% alginate. The optimum culture conditions for the Y-4 strain were 2% alginate, pH 8.0, and 3% NaCl at $30^{\circ}C$. The highest alginate lyase activity was also observed under the same conditions. To our knowledge, this is the first reported isolation of a marine bacterium degrading high concentrations of alginate.

Development of High Efficient Enzymatic Deinking Agent by Microorganism(I) -Isolation and Screening of Bacteria Producing Cellulase and Xylanase- (미생물 효소를 이용한 고효율 효소 탈묵제의 개발(제1보) -Cellulase와 Xylanase를 생산하는 Bacteria의 분리 및 선발-)

  • 박성철;강진하;이양수
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.1
    • /
    • pp.34-40
    • /
    • 2003
  • This study was carried out to select the useful bacteria which secret extracellula enzymes for enzymatic deinking agent of old newspaper. CMCase, FPase and xylanase activities of the bacteria liquid culture were measured at optimal growth conditions. Clear zone test was checked on the solid culture. The results of this study were as follow: Eight strains of 28 bacteria isolated from a paper mill soil ground were shown strong CMCase and xylanase activity with the clear zone test. The optimal pH and temperature for culture growth were 6~8 and 26~$34^{\circ}C$, respectively and optimal culture period were less than 60 hours. Based on CMCase, FPase and xylanase activity, strain No. 18, 21, 22 and 28 which were relatively higher than the other strains, were selected for further enzymatic deinking research.

Isolation of Keratinolytic Protease Producing Microorganism and Its Cultivation Condition (Keratinolytic protease 생산균, Pseudomonas sp. KP-364의 분리 및 배양)

  • 전동호;권태종
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.134-141
    • /
    • 2001
  • A bacterial strain KP-364 producing extracellular keratinolytic protease was isolated from the soil of the poultry fac-tory. It was identified as Pseudomonas sp. based on its morphological and physiological characteristics, The optimal culture conditions for the production of keratinolytic protease by Pseudomonas sp. KP-364 were investigated. The composition of optimal medium for the keratinolytic protease was 2.0% glucose, 0.5% soybean meal. 0.5% $NaNO_3$ and 0.2% KCI Optimal initial pH for production of Keratinolytic protease production were 6.5 and $37^{\circ}C$ respec- tively. The keratinolytic protease production reached a maximum of 1,270 U/ml/hr after 48 hours cultivation under the optimal culture conditions.

  • PDF