Browse > Article

A Culture-Based Study of the Bacterial Communities within the Guts of Nine Longicorn Beetle Species and their Exo-enzyme Producing Properties for Degrading Xylan and Pectin  

Park, Doo-Sang (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Oh, Hyun-Woo (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Jeong, Won-Jin (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Hyang-Mi (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Park, Ho-Yong (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Bae, Kyung-Sook (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Microbiology / v.45, no.5, 2007 , pp. 394-401 More about this Journal
Abstract
In this study, bacterial communities within the guts of several longicorn beetles were investigated by a culture-dependent method. A total of 142 bacterial strains were isolated from nine species of longicorn beetle, including adults and larvae. A comparison of their partial 16S rRNA gene sequences showed that most of the bacteria constituting the gut communities can typically be found in soil, plants and the intestines of animals, and approximately 10% were proposed as unreported. Phylogenetic analysis demonstrated that the bacterial species comprised 7 phyla, and approximately half were Gammaproteobacteria. Actinobacteria were the second most populous group (19%), followed by Firmicutes (13%) and Alphaproteobacteria (11%). Betaproteobacteria, Flavobacteria, and Acidobacteria were minor constituents. The taxonomic compositions of the isolates were variable according to the species of longicorn beetle. Particularly, an abundance of Actinobacteria existed in Moechotypa diphysis and Mesosa hirsute, which eat broadleaf trees; however, no Actinobacteria were isolated from Corymbia rubra and Monochamus alternatus, which are needle-leaf eaters. Considerable proportions of xylanase and pectinase producing bacteria in the guts of the longicorn beetles implied that the bacteria may play an important role in the digestion of woody diets. Actinobacteria and Gammaproteobacteria were the dominant xylanase producers in the guts of the beetles.
Keywords
gut bacteria; longicorn beetle; 16S rRNA gene; culture-based isolation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 13  (Related Records In Web of Science)
Times Cited By SCOPUS : 13
연도 인용수 순위
1 Amann, R.I., W. Ludwig, and K.H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169   PUBMED
2 Avigad, G. and Y. Milner. 1967. Turbidimetric assay for pectinase activity. Isr. J. Chem. 5, 175-180   DOI
3 Brauman, A., J. Dore, P. Eggleton, D. Bignell, J.A. Breznak, and M.D. Kane. 2001. Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol. Ecol. 35, 27-36   DOI
4 Chun, J. 1995. Computer-assisted classification and identification of actinomycetes, Ph. D. thesis. University of Newcastle, Newcastle upon Tyne, UK
5 Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequence. Int. J. Syst. Evol. Microbiol. in press
6 Friedrich, M.W., D. Schmitt-Wagner, T. Lueders, and A. Brune. 2001. Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl. Environ. Microbiol. 67, 4880-4890   DOI
7 Girard, C. and L. Jouanin. 1999. Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle, Phaedon cochleariae. Insect Biochem. Mol. Biol. 29, 1129-1142   DOI   ScienceOn
8 Heo, S., J. Kwak, H.W. Oh, D.S. Park, K.S. Bae, D.H. Shin, and H.Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16, 1753-1759   과학기술학회마을
9 Kim, J.I. 2002. A tentative list of Korean Coleoptera (Insecta), containing a species of newly recorded family. J. Kor. Biota 7, 225-261
10 Lilburn, T.G., K.S. Kim, N.E. Ostrom, K.R. Byzek, J.R. Leadbetter, and J.A. Breznak. 2001. Nitrogen fixation by symbiotic and free-living spirochetes. Science 292, 2495-2498   DOI   ScienceOn
11 Skipper, N., M. Sutherland, R.M. Davies, D. Kilburn, R. Miller, A. Warren, and R. Wong. 1985. Secretion of a bacterial cellulase by yeast. Science 230, 958   DOI   PUBMED   ScienceOn
12 Slaytor, M., A. Sugimoto, J. Azuma, K. Murashima, and T. Inoue. 1997. Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J. Insect. Physiol. 43, 235-242   DOI   ScienceOn
13 Lane, D.J. 1991. 16S/23S rRNA sequencing. In E. Stackebrandt and M. Goodfellow, Nucleic acid techniques in bacterial systematics. Wiley, New York, USA
14 Lee, S.M. 1987. The longicorn beetles of Korean peninsula. National Science Museum, Seoul, Republic of Korea
15 Tokuda, G., N. Lo, H. Watanabe, M. Slaytor, T. Matsumoto, and H. Noda. 1999. Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim. Biophys. Acta 1447, 146-59   DOI   PUBMED   ScienceOn
16 Breznak, J.A. 1982. Intestinal microbiota of termites and other xylophagous insects. Annu. Rev. Microbiol. 36, 323-343   DOI   PUBMED   ScienceOn
17 Kwak, J., K. Lee, D.H. Shin, J.S. Maeng, D.S. Park, H.W. Oh, K.S. Bae, and H.Y. Park. 2007. Biochemical and genetic characterization of an extracellular metalloprotease produced from Serratia proteamaculans. J. Microbiol. Biotechnol. 17, 761-768   과학기술학회마을
18 Suh, S.O., C.J. Marshall, J.V. McHugh, and M. Blackwell. 2003. Wood ingestion by passalid beetles in the presence of xylosefermenting gut yeasts. Mol. Ecol. 12, 3137-3145   DOI   ScienceOn
19 Chen, D.Q. and A.H. Purcell. 1997. Occurrence and transmission of facultative endosymbionts in aphids. Curr. Microbiol. 34, 220-225   DOI
20 Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootsrap. Evolution 39, 783-791   DOI   ScienceOn
21 Rondon, M.R., R.M. Goodman, and J. Handelsman. 1999. The Earth's bounty: assessing and accessing soil microbial diversity. Trends Biotechnol. 17, 403-409   DOI   ScienceOn
22 Lee, G.E., C.H. Kim, H.J. Kwon, J. Kwak, D.H. Shin, D.S. Park, K.S. Bae, and H.Y. Park. 2004a. Biochemical characterization of an extracellular protease in Serratia proteomaculans isolated from a spider. Kor. J. Microbiol. 40, 269-274   과학기술학회마을
23 Watanabe, H., H. Noda, G. Tokuda, and N. Lo. 1998. A cellulase gene of termite origin. Nature 394, 330-331   DOI   ScienceOn
24 Zhou, X., J.A. Smith, F.M. Oi, P.G. Koehler, G.W. Bennett, and M.E. Scharf. 2007. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395, 29-39   DOI   ScienceOn
25 Brune, A. and M. Friedrich. 2000. Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbiol. 3, 263-269   DOI   ScienceOn
26 Kinya, K., S. Kozaki, and M. Sakuranaga. 1998. Degradation of lignin compounds by bacteria from termite guts Biotechnol. Lett. 20, 459-462   DOI   ScienceOn
27 Ohkuma, M. 2003. Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl. Microbiol. Biotechnol. 61, 1-9   DOI   PUBMED
28 Cleveland, L.R. 1923. Symbiosis between termites and their intestinal protozoa. Proc. Natl. Acad. Sci. USA 9, 424-428
29 Egert, M., B. Wagner, T. Lemke, A. Brune, and M.W. Friedrich. 2003. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 69, 6659-6668   DOI
30 Dillon, R.J. and V.M. Dillon. 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49, 71-92   DOI   ScienceOn
31 Park, D.S., H.W. Oh, H. Kim, S.Y. Heo, N. Kim, K.Y. Seol, and H.Y. Park. 2007. Screening of bacteria producing lipase from insect gut: isolation and characterization of a strain, Burkholderia sp. HY-10 producing lipase. Kor. J. Appl. Entomol. 46, 131-139   과학기술학회마을   DOI
32 Lee, S.J., S.R. Kim, H.J. Yoon, I. Kim, K.S. Lee, Y.H. Je, S.M. Lee, S.J. Seo, H. Dae Sohn, and B.R. Jin. 2004b. cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 107-116   DOI   ScienceOn
33 Hugenholtz, P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biology 3, 1-8
34 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120   DOI
35 Lilburn, T.G., T.M. Schmidt, and J.A. Breznak. 1999. Phylogenetic diversity of termite gut spirochaetes. Environ. Microbiol. 1, 331-345   DOI   ScienceOn
36 Broderick, N.A., K.F. Raffa, R.M. Goodman, and J. Handelsman. 2004. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293-300   DOI
37 Lemke, T., U. Stingl, M. Egert, M.W. Friedrich, and A. Brune. 2003. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 69, 6650-6658   DOI
38 Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402   DOI
39 Hugenholtz, P., B.M. Goebel, and N.R. Pace. 1998. Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765-4774 (Erratum, 180, 6793)   PUBMED
40 Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882   DOI