Evaluation of Arabinofuranosidase and Xylanase Activities of Geobacillus spp. Isolated from Some Hot Springs in Turkey

  • Sabriye, Canakci (Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University) ;
  • Inan, Kadriye (Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University) ;
  • Murat, Kacagan (Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University) ;
  • Belduz, Ali Osman (Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University)
  • Published : 2007.08.30

Abstract

Some hot springs located in the west of Turkey were investigated with respect to the presence of thermophilic microorganisms. Based on phenotyping characteristics and 16S rRNA gene sequence analysis, 16 of the isolates belonged to the genus Geobacillus and grew optimally at about $60^{\circ}C$ on nutrient agar. 16S rRNA gene sequence analysis showed that these isolates resembled Geobacillus species by ${\ge}97%$, but SDS-PAGE profiles of these 16 isolates differ from some of the other species of the genus Geobacillus. However, it is also known that analysis of 16S rRNA gene sequences may be insufficient to distinguish between some species. It is proposed that recN sequence comparisons could accurately measure genome similarities for the Geobacillus genus. Based on recN sequence analysis, isolates 11, IT3, and 12 are strains of G stearothermophilus; isolate 14.3 is a strain of G thermodenitrificans; isolates 9.1, IT4.1, and 4.5 are uncertain and it is required to make further analysis. The presence of xylanase and arabinofuranosidase activities, and their optimum temperature and pH were also investigated. These results showed that 7 of the strains have both xylanase and arabinofuranosidase activities, 4 of them has only xylanase, and the remaning 5 strains have neither of these activities. The isolates 9.1, 7.1, and 3.3 have the highest temperature optima ($80^{\circ}C$), and 7.2, 9.1, AO4, 9.2, and AO17 have the highest pH optima (pH 8) of xylanase. Isolates 7.2, AO4, AC15, and 12 have optimum arabinofuranosidase activities at $75^{\circ}C$, and only isolate AC15 has the lowest pH of 5.5.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Becker, P., I. Abu-Reesh, and S. Markossian. 1997. Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil. Appl. Microbiol. Biotechnol. 48: 184-190 https://doi.org/10.1007/s002530051036
  3. Beffa, T., M. Blanc, P. F. Lyon, G. Vogt, M. Marchiani, J. L. Fischer, and M. Aragno. 1996. Isolation of Thermus strains from hot composts (60 to 80$^{\circ}C$). Appl. Environ. Microbiol. 62: 1723-1727
  4. Beg, O. K., B. Bhushan, M. Kapoor, and G. S. Hoondal. 2000. Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J. Ind. Microbiol. Biotechnol. 24: 396-402 https://doi.org/10.1038/sj.jim.7000010
  5. Belduz, A. O., E. J. Lee, and J. G. Harman. 1993. Mutagenesis of the cyclic AMP receptor protein of Escherichia coli: Targeting positions 72 and 82 of the cyclic nucleotide binding pocket. Nucleic Acids Res. 21: 1827-1835 https://doi.org/10.1093/nar/21.8.1827
  6. Belduz, A. O., S. Dulger, and Z. Demirbag. 2003. Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int. J. Syst. Evol. Microbiol. 53: 1315-1320 https://doi.org/10.1099/ijs.0.02473-0
  7. Benson, D. A., M. S. Boguski, D. J. Lipman, B. F. F. Oullette, B. A. Rapp, and D. L. Wheelet. 1999. GenBank. Nucleic Acids Res. 27: 12-17 https://doi.org/10.1093/nar/27.1.12
  8. Bergquist, P. L. and H. W. Morgan. 1992. The molecular genetics and biotechnological application of enzyme from extremely thermophilic eubacteria, pp. 44-75. In R. A. Herbert and R. J. Sharp (eds.), Molecular Biology and Biotechnology of Extremophiles. Chapman & Hall, New York
  9. Bezalel, L., Y. Shoham, and E. Rosenberg. 1993. Characterization and delignification activity of a thermostable $\alpha$-Larabinofuranosidase from Bacillus stearothermophilus. Appl. Microbiol. Biotechnol. 40: 57-62
  10. Brosius, J., M. L. Palmer, P. J. Kennedy, and H. F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 4801-4805
  11. Cato, E. P., D. E. Hash, L. V. Holdeman, and W. E. C. Moore. 1982. Electrophoretic study of Clostridium species. J. Clin. Microbiol. 15: 688-702
  12. Cowan, S. T. and K. J. Steel. 1974. Manual for the Identification of Medical Bacteria, 2nd Ed. Cambridge: Cambridge University, London
  13. Dupont, C. I., P. Juteu, R. Vllemur, F. Lepine, and R. Beaudet. 2005. Evaluation of the enzyme activities of several bacteria isolated from a thermophilic aerobic reactor treating swine waste. Canadian Society of Microbiologists, Annual Conference
  14. Gessesse, A. 1998. Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl. Environ. Microbiol. 64: 3533-3535
  15. Gilead, S. and Y. Shoham. 1995. Purification and characterization of $\alpha$-L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 61: 170-174
  16. Khasin, A., I. Alchanati, and Y. Shoham. 1993. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59: 1725-1730
  17. Lee, D., Y. S. Koh, K. J. Kim, B. C. Kim, H. J. Choi, D. S. Kim, M. T. Suhartono, and Y. R. Pyun. 1999. Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 179: 393-400 https://doi.org/10.1111/j.1574-6968.1999.tb08754.x
  18. Marteinsson, V. T., J. L. Birrien, C. Jeanthon, and D. Prieur. 1996. Numerical taxonomic study of thermophilic Bacillus isolated from three geographically separated deep-sea hydrothermal vents. FEMS Microbiol. Ecol. 21: 255-266 https://doi.org/10.1111/j.1574-6941.1996.tb00122.x
  19. Maugeri, T. L., C. Gugliandolo, D. Caccamo, and E. Stackebrandt. 2001. A polyphasic taxonomic study of thermophilic bacilli from shallow, marine vents. Syst. Appl. Microbiol. 24: 572-587 https://doi.org/10.1078/0723-2020-00054
  20. Miller, G. L. 1959. Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  21. Nanmori, T., T. Watanabe, R. Shinke, A. Kohno, and Y. Kawamura. 1990. Purification and properties of thermostable xylanase and $\beta$-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J. Bacteriol. 172: 6669-6672 https://doi.org/10.1128/jb.172.12.6669-6672.1990
  22. Nazina, T. N., T. P. Tourova, A. B. Poltaraus, E. V. Novikova, A. A. Grigoryan, A. E. Ivanova, A. M. Lysenko, V. V. Petrunyaka, G. A. Osipov, S. S. Belyaev, and M. V. Ivanov. 2001. Taxonomic study of aerobic thermophilic bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius, and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius, and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51: 433-446 https://doi.org/10.1099/00207713-51-2-433
  23. Rainey, F. A., D. Fritze, and E. Stackebrandt. 1994. The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiol. Lett. 115: 205-212 https://doi.org/10.1111/j.1574-6968.1994.tb06639.x
  24. Sonnleitner, B. and A. Fiechter. 1983. Advantages of using thermophiles in biotechnological processes: Expectations and reality. Trends Biotechnol. 1: 74-80 https://doi.org/10.1016/0167-7799(83)90056-2
  25. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849 https://doi.org/10.1099/00207713-44-4-846
  26. Swofford, D. L. 1998. Phylogenetic Analysis Using Parsimony (and other methods). Sinauer, Sunderland, MA
  27. Takao, M., K. Akiyama, and T. Sakai. 2002. Purification and characterization of thermostable endo-1,5-$\alpha$-L-arabinase from a strain of Bacillus thermodenitrificans. Appl. Environ. Microbiol. 68: 1639-1646 https://doi.org/10.1128/AEM.68.4.1639-1646.2002
  28. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882
  29. Touzel, J. P., M. O'Donohue, P. Debeire, E. Samain, and C. Breton. 2000. Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int. J. Syst. Evol. Microbiol. 50: 315-320 https://doi.org/10.1099/00207713-50-1-315
  30. Vandamme, P., B. Plot, M. Gillis, P. De Vos, K. Kersters, and J. Swings. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407- 438
  31. Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimon, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Trüper. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464 https://doi.org/10.1099/00207713-37-4-463
  32. Zeigler, D. R. 2003. Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int. J. Syst. Evol. Microbiol. 53: 1893-1900 https://doi.org/10.1099/ijs.0.02713-0
  33. Zeigler, D. R. 2005. Application of a recN sequence similarity analysis to the identification of species within the bacterial genus Geobacillus. Int. J. Syst. Evol. Microbiol. 55: 1171-1179 https://doi.org/10.1099/ijs.0.63452-0