A Feedback Linearization Control of Container Cranes: Varying Rope Length

  • Park, Hahn (School of Mechanical Engineering, Pusan National University) ;
  • Chwa, Dong-Kyoung (School of Electrical and Computer Engineering, Ajou University) ;
  • Hong, Keum-Shik (School of Mechanical Engineering, Pusan National University)
  • Published : 2007.08.31

Abstract

In this paper, a nonlinear anti-sway controller for container cranes with load hoisting is investigated. The considered container crane involves a planar motion in conjunction with a hoisting motion. The control inputs are two (trolley and hoisting forces), whereas the variables to be controlled are three (trolley position, hoisting rope length, and sway angle). A novel feedback linearization control law provides a simultaneous trolley-position regulation, sway suppression, and load hoisting control. The performance of the closed loop system is shown to be satisfactory in the presence of disturbances at the payload and rope length variations. The advantage of the proposed control law lies in the full incorporation of the nonlinear dynamics by partial feedback linearization. The uniform asymptotic stability of the closed-loop system is assured irrespective of variations of the rope length. Simulation and experimental results are compared and discussed.

Keywords

References

  1. M. J. Agostini, G. G. Parker, H. Schaub, K. Groom, and R. D. Robinett III, 'Generating swing-suppressed maneuvers for crane systems with rate saturation,' IEEE Trans. on Control Systems Technology, vol. 11, no. 4, pp. 471-481, 2003 https://doi.org/10.1109/TCST.2003.813402
  2. J. W. Auernig and H. Troger, 'Time optimal control of overhead cranes with hoisting of the load,' Automatica, vol. 23, no. 4, pp. 437-447, 1987 https://doi.org/10.1016/0005-1098(87)90073-2
  3. G. Bartolini, A. Pisano, and E. Usai, 'Second-order sliding-mode control of container cranes,' Automatica, vol. 38, no. 10, pp. 1783-1790, 2002 https://doi.org/10.1016/S0005-1098(02)00081-X
  4. A. K. Bhimani and S. Hoite, 'Machinery trolley cranes,' Proc. of Port's 98, Long Beach, March 8, 1998
  5. K. Bhimani and M. A. Jordan, 'A few facts about jumbo cranes,' Terminal Operation Conference Americas, Panama, Dec. 3, 2003
  6. C. C. Cheng and C. Y. Chen, 'Controller design for an overhead crane system with uncertainty,' Control Engineering Practice, vol. 4, no. 5, pp. 645-653, 1996 https://doi.org/10.1016/0967-0661(96)00046-9
  7. C. C. Chung and J. Hauser, 'Nonlinear control of a swinging pendulum,' Automatica, vol. 31, no. 6, pp. 851-862, 1995 https://doi.org/10.1016/0005-1098(94)00148-C
  8. G. Corriga, A. Giua, and G. Usai, 'An implicit gain-scheduling controller for cranes,' IEEE Trans. on Control Systems Technology, vol. 6, no. 1, pp. 15-20, 1998 https://doi.org/10.1109/87.654873
  9. B. D'Andrea-Novel and J. M. Coron, 'Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach,' Automatica, vol. 36, no. 4, pp. 587-593, 2000 https://doi.org/10.1016/S0005-1098(99)00182-X
  10. B. D'Andrea-Novel and J. M. Coron, 'Stabilization of an overhead crane with a variable length flexible cable,' Computational and Applied Mathematics, vol. 21, no. 1, pp. 101-134, 2002
  11. Y. Fang, W. E. Dixon, D. M. Dawson, and E. Zergeroglu, 'Nonlinear coupling control laws for an underactuated overhead crane system,' IEEE/ASME Trans. on Mechatronics, vol. 8, no. 3, pp. 418-423, 2003 https://doi.org/10.1109/TMECH.2003.816822
  12. A. Giua, M. Sanna, and C. Seatzu, 'Observer-controller design for three dimensional overhead cranes using time-scaling,' Mathematical and Computer Modeling of Dynamical Systems, vol. 7, no. 1, pp. 77-107, 2001 https://doi.org/10.1076/mcmd.7.1.77.3634
  13. J. J. Hamalainen, A. Marttinen, L. Baharova, and J. Virkkunen, 'Optimal path planning for a trolley crane: Fast and smooth transfer of load,' IEE Proceedings on Control Theory Application, vol. 142, no. 1, pp. 51-57, 1995 https://doi.org/10.1049/ip-cta:19951593
  14. K. S. Hong, S. C. Sohn, and M. H. Lee, 'Sway control of a container crane (part I): Modeling, control strategy, error feedback control via reference velocity profiles,' Journal of Control, Automation and Systems Engineering (in Korean), vol. 3, no. 1, pp. 23-31, 1997
  15. K. S. Hong, S. C. Sohn, and M. H. Lee, 'Sway control of a container crane (part II): Regulation of the pendulum motion through patternizing the trolley moving velocity,' Journal of Control, Automation and Systems Engineering (in Korean), vol. 3, no. 2, pp. 132-138, 1997
  16. K. S. Hong, B. J. Park, and M. H. Lee, 'Two-stage control for container cranes,' JSME International Journal, Series C, vol. 43, no. 2, pp. 273-282, 2000 https://doi.org/10.1299/jsmec.43.273
  17. K. T. Hong, C. D. Huh, and K. S. Hong, 'Command shaping control for limiting the transient sway angle of crane systems,' International Journal of Control, Automation, and Systems, vol. 1, no. 1, pp. 43-53, 2003
  18. M. A. Jordan, 'Quay crane productivity,' Terminal Operation Conference Americas, Miami, October, 2002
  19. H. K. Khalil, Nonlinear Systems, 3rd edition, Prentice-Hall, 2002
  20. B. Kiss, J. Levine, and Ph. Mullhaupt, 'Global stability without motion planning may be worse than local tracking,' Proc. of the European Control Conference, pp. 1106-1110, 2001
  21. Y. S. Kim, K. S. Hong, and S. K. Sul, 'Anti-sway control of container cranes: Inclinometer, observer, and state feedback,' International Journal of Control, Automation, and Systems, vol. 2, no. 4, pp. 435-449, 2004
  22. Y. B. Kim, D. H. Moon, J. H. Yang, and G. H. Chae, 'An anti-sway control system design based on simultaneous optimization design approach,' Journal of Ocean Engineering and Technology (in Korean), vol. 19, no. 3, pp. 66-73, 2005
  23. H.-H. Lee, 'A new approach for the anti-swing control of overhead cranes with high-speed load hoisting,' International Journal of Control, vol. 76, no. 15, pp. 1493-1499, 2003 https://doi.org/10.1080/00207170310001604954
  24. H.-H. Lee, 'A new motion-planning scheme for overhead cranes with high-speed hoisting,' Journal of Dynamic Systems, Measurement, and Control, vol. 126, no. 2, pp. 359-364, 2004 https://doi.org/10.1115/1.1767855
  25. G. A. Manson, Time Optimal Control Methods Arising from the Study of Overhead Cranes, Ph.D. thesis, University of Strathclyde, Glasgow, U.K., 1977
  26. A. Piazzi and A. Visioli, 'Optimal dynamic-inversion-based control of an overhead crane,' IEE Proc.-Control Theory Appl., vol. 149, no. 5, pp. 405-411, 2002 https://doi.org/10.1049/ip-cta:20020587
  27. B. S. Park, J. S. Yoon, and E. S. Kang, 'A study on tracking control of an industrial overhead crane using sliding mode controller,' Journal of Control, Automation and Systems Engineering (in Korean), vol. 6, no. 11, pp. 1022-1032, 2000
  28. C. D. Rahn, F. Zhang, S. Joshi, and D. M. Dawson, 'Asymptotically stabilizing angle feedback for a flexible cable gantry crane,' Journal of Dynamic Systems, Measurement, and Control, vol. 121, no. 3, pp. 563-566, 1999 https://doi.org/10.1115/1.2802516
  29. Y. Sakawa and Y. Shindo, 'Optimal control of container cranes,' Automatica, vol. 18, no. 3, pp. 257 -266, 1982 https://doi.org/10.1016/0005-1098(82)90086-3
  30. W. Singhose, L. Porter, M. Kenison, and E. Kriikku, 'Effects of hoisting on the input shaping control of gantry cranes,' Control Engineering Practice, vol. 8, no. 10, pp. 1159-1165, 2000 https://doi.org/10.1016/S0967-0661(00)00054-X
  31. J. K. Son, J. J. Choi, M. O. So, T. K. Nam, and S. J. Kwon, 'Design of a container crane controller using the LQ control technique,' Journal of the Korean Society of Marine Engineers (in Korean), vol. 26, no. 5, pp. 544-553, 2002