Factors Indicating Culture Status During Cultivation of Spirulina (Arthrospira) platensis

  • Kim, Choong-Jae (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jung, Yun-Ho (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • 발행 : 2007.04.30

초록

Factors indicating culture status of two Spirulina platensis strains were monitored in a batch mode cultivation for 36 days. Changing mode in all factors showed a common turning point, indicating shift of cell or culture status. Mean biomass productivity was highly sustained until day 22, chlorophyll a concentration peaked on day 22, pH value was > 12 on day 22, coil number was abruptly shortened on day 22, and floating activity was sustained at greater than 79% after day 22, indicating that day 22 is a criterion reflecting phase-transfer in cell physiology in a batch culture system. Many of these changes may have been caused by increased pH, suggesting that pH control is essential for mass production of S. platensis. Fluctuations in floating activity were likely induced by the number of cellular gas vacuoles. Consequently, coil number per trichome and floating activity of S. platensis could readily act as simple indicators for determination of culture status or harvesting time of cells.

키워드

참고문헌

  1. Belay, A., T. Kato, and Y. Ota. 1996. Spirulina (Arthrospira): potential application as an animal feed supplement. J. Appl. Phycol. 8, 303-311 https://doi.org/10.1007/BF02178573
  2. Belay, A., Y. Ota, K. Miyakawa, and H. Shimamatsu. 1993. Current knowledge on potential health benefits of Spirulina. J. Appl. Phycol. 5, 235-241 https://doi.org/10.1007/BF00004024
  3. Belkin, S. and S. Boussiba. 1991. Resistance of Spirulina platensis to ammonia at high pH values. Plant Cell Physiol. 32, 953-958 https://doi.org/10.1093/oxfordjournals.pcp.a078182
  4. Ciferri, O. 1983. Spirulina, the edible micro-organism. Microbiol. Rev. 47, 551-578
  5. Dainippon Ink and Chemicals. 1985. Lina Blue A (Natural blue colorant of Spirulina origin). Technical information Dainippon Ink and Chemicals, Tokyo, Japan
  6. Dinsdale, M.T. and A.E. Walsby. 1972. The interrelations of cell turgor pressure, gas-vacuolation, and buoyancy in a blue-green alga. J. Exp. Bot. 23, 561-570 https://doi.org/10.1093/jxb/23.2.561
  7. Gitelson, A., S. Laorawat, G.P.P. Keydan, and A. Vonshak. 1995. Optical properties of dense algal cultures outdoors and its application to remote estimation of biomass and pigment concentration in Spirulina platensis. J. Phycol. 31, 828-834 https://doi.org/10.1111/j.0022-3646.1995.00828.x
  8. Kim, S.G., A. Choi, C.Y. Ahn, C.S. Park, Y.H. Park, and H.M. Oh. 2005. Harvesting of Spirulina platensis by cellular flotation and growth stage determination. Lett. Appl. Microbiol. 40, 190- 194 https://doi.org/10.1111/j.1472-765X.2005.01654.x
  9. Lee, S.H., T. Motomura, and T. Ichimura. 2002. Light and electron microscopic observations of preferential destruction of chloroplast and mitochondrial DNA at early male gametogenesis of the anisogamous green alga Derbesia tenuissima (Chlorophyta). J. Phycol. 38, 534-542 https://doi.org/10.1046/j.1529-8817.2002.t01-1-01212.x
  10. Lu, J., G. Yoshizaki, K. Sakai, and T. Takeuchi. 2002. Acceptability of raw Spirulina platensis by larval tilapia Oreochromis niloticus. Fish. Sci. 68, 51-58 https://doi.org/10.1046/j.1444-2906.2002.00388.x
  11. Richmond, A. 2000. Microalgal biotechnology at the turn of the millennium: A personal view. J. Appl. Phycol. 12, 441-451 https://doi.org/10.1023/A:1008123131307
  12. Richmond, A. and J.U. Grobbelaar. 1986. Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 10, 253-264 https://doi.org/10.1016/0144-4565(86)90002-8
  13. Schlesinger, P., S. Belkin, and S. Boussiba. 1996. Sodium deprivation under alkaline conditions causes rapid death of the filamentous cyanobacterium Spirulina platensis. J. Phycol. 32, 608-613 https://doi.org/10.1111/j.0022-3646.1996.00608.x
  14. Strickland, J.D.H. and T.R. Parson. 1968. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa, Canadad
  15. Stumn, W. and J.J. Morgan. 1981. Aquatic Chemistry. 2nd (ed.), Wiley, New York, USA
  16. van Rijn, J. and M. Shilo. 1985. Carbohydrate fluctuations, gas vacuolation, and vertical migration of scum-forming cyanobacteria in fish ponds. Limnol. Oceanogr. 30, 1219-1228 https://doi.org/10.4319/lo.1985.30.6.1219
  17. Walsby, A.E. 1969. The permeability of blue-green algal gas vacuole membranes to gas. Proc. R. Soc. London Ser. B 173, 235-255
  18. Walsby, A.E. 1971. The pressure relationships of gas vacuoles. Proc. R. Soc. London Ser. B 178, 301-326
  19. Walsby, A.E. 1982. Cell-water and cell-solute relations. p 237-262. In N.G. Carr and B.A. Whitton (eds), The Biology of Cyanobacteria, Blackwell Science Publications, Oxford
  20. Walsby, A.E. 1994. Gas Vesicles. Microbiol. Rev. 58, 94-144
  21. Zarouk, C. 1966. Contribution aletude d'une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. Et Gardner) Geitler. Ph. D. thesis, University of Paris, France
  22. Zhao, Y., H. Wu, H. Guo, M. Xu, K. Cheng, and H. Zhu. 2001. Vacuolation induced by unfavorable pH in cyanobacteria. Prog. Nat. Sci. 11, 934-936