DOI QR코드

DOI QR Code

A Study on Effects of Hydrogen Addition in Methane-Air Diffusion Flame

메탄-공기 확산화염에서 수소 첨가 효과에 관한 연구

  • 박준성 (순천대학교 기계공학과대학원) ;
  • 김정수 (순천대학교 기계우주항공공학부) ;
  • 김성초 (순천대학교 기계우주항공공학부) ;
  • 길상인 (한국기계연구원 환경에너지기계연구본부) ;
  • 윤진한 (한국기계연구원 환경에너지기계연구본부) ;
  • 김우현 (한국기계연구원 환경에너지기계연구본부) ;
  • 박정 (부경대학교 기계공학부)
  • Published : 2007.04.01

Abstract

Hydrogen-blending effects in flame structure and NO emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane to the blending fuel of methane-hydrogen through $H_2$ molar addition up to 30%. Flame structure, which can be described representatively as a fuel consumption layer and a $H_2$-CO consumption layer, is shown to be changed considerably in hydrogen-blending methane flames, compared to pure methane flames. The differences are displayed through maximum flame temperature, the overlap of fuel and oxygen, and the behaviors of the production rates of major species. Hydrogen-blending into hydrocarbon fuel can be a promising technology to reduce both the CO and $CO_2$ emissions supposing that NOx emission should be reduced through some technologies in industrial burners. These drastic changes of flame structure affect NO emission behavior considerably. The changes of thermal NO and prompt NO are also provided according to hydrogen-blending. Importantly contributing reaction steps to prompt NO are addressed in pure methane and hydrogen-blending methane flames.

Keywords

References

  1. Park, J., Hwang, D. J., Choi, J. G., Lee, K. M., Keel, S. I., Shim, S. H., 2003, 'Chemical Effects of CO2 addition to oxidizer and fuel streams on Flame Structure in H2-O2 Counterflow Diffusion Flames,' lnt. J. Energy Research, Vol. 27, pp. 1205-1220 https://doi.org/10.1002/er.946
  2. Refael, S., Sher, E., 1989, 'Reaction Kinetics of Hydrogen-Enriched Methane-Air and Propane-Air Flames,' Comb. Flame Vol. 78, pp. 326-338 https://doi.org/10.1016/0010-2180(89)90021-7
  3. Jackson, G. S., Sai, R., Plaia, J. M., Boggs, C. M., Kiger, K. T., 2003, 'Influence of H2 on the Response of Lean Premixed CH4 Flames to High Strained Flows,' Comb. Flame Vol. 132, pp. 503-511 https://doi.org/10.1016/S0010-2180(02)00496-0
  4. Hawkes, E. R., Chen, J. H., 2004, 'Direct Numerical Simulation of Hydrogen-Enriched Lean Premixed Methane-Air Flames,' Comb. Flame Vol. 138, pp. 242-258 https://doi.org/10.1016/j.combustflame.2004.04.010
  5. Ren, J-Y, Qin, W., Egolfopoulos, F. N., Tsotsis, T. T., 2001, 'Strain-Rate Effects on Hydrogen-Enhanced Lean Premixed Combustion,' Comb. Flame Vol. 124, pp. 717-720 https://doi.org/10.1016/S0010-2180(00)00205-4
  6. Kee, R. J., Miller, J. A., Evans, G. H., Dixon-Lewis, G., 1988, 'A Computational Model of the Structure and Extinction of Strained, Opposed Flow, Premixed Methane-Air Flame,' Proc. Combustion Inst. Vol. 22, p. 1479
  7. Lutz, A. E., Kee, R. J., Grcar, J. F., Rupley, F. M., 1997, 'A Fortran Program for Computing Opposed-Flow Diffusion Flames,' Sandia Report, SAND96-8243
  8. Ju, Y., Guo, H., Maruta, K., Liu, F., 1997, 'On the Extinction Limit and Flammability Limit of Non-Adiabatic Stretched Methane-Air Premixed Flames,' J. Fluid Mech. Vol. 342, p. 315 https://doi.org/10.1017/S0022112097005636
  9. Kee, R. J., Rupley, F. M., Miller, J. A., 1989, 'Chemkin II: A Fortran Chemical Kinetics Package for Analysis of Gas Phase Chemical Kinetics,' Sandia Report, SAND89-8009B
  10. Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., Miller, J. A., 1994, 'A Fortran Computer Code Package for the Evaluation of Gas-Phase Multi-ComponentTransport,' Sandia Report, SAND86-8246
  11. Smith, G. P., Golden, D. M., Frenklach, N. W., Eiteneer, M. B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Dong, S., Gardiner, W. C., Lissianski, Jr.-VV, Qin, Z., 2006, http://www.me.berkeley. edu/gri_mech/
  12. Westbrook, C. K., Dryer, F. L., 1984, 'Chemical Kinetic Modeling of Hydrovarbon Combustion' Prog. Energy Combust. Sci. Vol. 10, p. 1 https://doi.org/10.1016/0360-1285(84)90118-7
  13. Seshadri, K., Peters, N., 1988, 'Asymptotic Structure and Extinction of Methane-Air Diffusion Flames,' Comb. Flame Vol. 73, pp. 23-44 https://doi.org/10.1016/0010-2180(88)90051-X
  14. Park, J., Lee, K. M., Lee, E. J., 2001, 'Effects of $CO_2$ Addition on Flame Structure in Counterflow Diffusion Flame of $H_2/CO_2/N_2$ Fuel,' Int. J. of Energy Research Vol. 25, pp. 469-485 https://doi.org/10.1002/er.694