Abstract
Mechanical property evaluation of micrometer-sized structures is necessary to help design reliable microelectromechanical systems(MEMS) devices. Most material properties are known to exhibit dependence on specimen size and such properties of microscale structures are not well characterized. This paper describes techniques developed for tensile testing of thin film used in MEMS. Epi-polycrystalline silicon is currently the most widely used material, and its tensile strength has been measured as 1.52GPa. We have developed a tensile testing machine for testing microscale specimen using electro-magnetic actuator. The field magnet and the moving coil taken from an audio-speaker were utilized as the components of the actuator. Structure of specimen was designed and manufactured for easy handling and alignment. In addition to the static tensile tests, it is described that new techniques and procedures can be adopted for high cycle fatigue test of a thin film.