DOI QR코드

DOI QR Code

MAXIMAL COLUMN RANK PRESERVERS OF INTEGER MATRICES

  • Published : 2007.04.30

Abstract

The maximal column rank of an $m{\times}n$ matrix A over the ring of integers, is the maximal number of the columns of A that are weakly independent. We characterize the linear operators that preserve the maximal column ranks of integer matrices.

Keywords

References

  1. L. B. Beasley and N. J. Pullman, Nonnegative rank-preserving operators, Linear Algebra Appl. 65 (1985), 207-223 https://doi.org/10.1016/0024-3795(85)90098-9
  2. L. B. Beasley and N. J. Pullman, Semiring rank versus column rank, Linear Algebra Appl. 101 (1988), 33-48 https://doi.org/10.1016/0024-3795(88)90141-3
  3. L. B. Beasley, S. Z. Song, K. T. Kang, and B. K. Sarma, Column ranks and their preservers over nonnegative real matrices, Linear Algebra Appl. 399 (2005), 3-16 https://doi.org/10.1016/j.laa.2004.04.022
  4. D. M. Burton, Elementary Number Theorey (3rd), Wm.C. Brown Publishers, Oxford, England, 1994
  5. S. G. Hwang, S. J. Kim, and S. Z. Song, Linear operators that preserve maximal column rank of Boolean matrices, Linear and Multilinear Algebra 36 (1994), 305-313 https://doi.org/10.1080/03081089408818305
  6. S. Z. Song, A comparison of maximal column ranks of matrices over related semirings, J. Korean Math. Soc. 34 (1997), no. 1, 213-225
  7. S. Z. Song and K. T. Kang, Maximal column ranks and their preservers of matrices over max algebra, J. Korean Math. Soc. 40 (2003), no. 6, 943-950 https://doi.org/10.4134/JKMS.2003.40.6.943