References
-
F. Beukers, The Diophantine equation
$Ax^P$ +$By^q$ =$Cz^T$ , Duke Math. J. 91 (1998), 61-88 https://doi.org/10.1215/S0012-7094-98-09105-0 -
N. Bruin, The Diophantine equations
$x^2 {\pm} y^4 = {\pm}z^6$ and$x^2 + y^8 = z^3$ , Compositio Math. 118 (1999), 305-321 https://doi.org/10.1023/A:1001529706709 - N. Bruin, On powers as sums of two cubes, in Algorithmic Number theory, Prod. 4th International Symp. Lecture Notes in Computer Science 1838, Springer, New York, (2000), 169-184
-
L. Danielson and B. Fein, On the irreducibility of the iterates of
$x^n$ - b, Proc. Amer. Math. Soc. 130 (2001), 1589-1597 https://doi.org/10.1090/S0002-9939-01-06258-X -
H. Darmon, The equation
$x^4-y^4=z^p$ , C.R.Math. Rep. Acad. Sci. Canada 15 (1993), 286-290 -
H. Darmon, The equation
$x^n+y^n=z^2\;and\;x^n+y^n=z^3$ , Int. Math. Res. Notices 10 (1993), 236-274 -
H. Darmon and A. Granville, On the equations
$z^m$ = F(x, y) and$Ax^p + By^q = Cz^r$ ; Bull. London Math. Soc. 27 (1995), 513-543 https://doi.org/10.1112/blms/27.6.513 - H. Darmon and L. Merel, Widning quotients and some variants of Fermat's Last Theorem, J. Reine Angew. Math. 490 (1997), 81-100
- B. Fein and M. Schacker, Properties of iterates and composites of polynomials, J. London Math. Soc. 54 (1996), 489-497 https://doi.org/10.1112/jlms/54.3.489
-
A. Kraus, Sur l'equation
$a^3+b^3=c^p$ , Experiment Math. 7 (1998), 1-13 https://doi.org/10.1080/10586458.1998.10504355 -
A. Kraus, On the equation
$x^p+y^p=z^r$ , A survey, Ramanujan 3 (1999), 315-333 https://doi.org/10.1023/A:1009835521324 - R. W. K. Odoni, The Galois theory of iterates and composites of polynomials, Proc. London Math. Soc. 51 (1985), 385-414 https://doi.org/10.1112/plms/s3-51.3.385
- R. W. K. Odoni, Realising wreath products of cyclic groups as Galois groups, Mathematika 35 (1988), 101-113 https://doi.org/10.1112/S002557930000632X
-
B. Poonen, Some Diophantine equations of the form
$x^n+y^n=z^m$ , Acta Arith. LXXXVI 3 (1998), 193-205 - M. Stoll, Galois groups over Q of some iterated polynomials, Arch. Math. 59 (1992), 239-244 https://doi.org/10.1007/BF01197321