기계적 합금화법으로 제조된 $MgH_x-Fe_2O_3$ 복합재료의 수소화 특성 평가

The Evaluation of Hydrogenation Properties on $MgH_x-Fe_2O_3$ Composite by Mechanical Alloying

  • 석송 (충주대학교 신소재공학과/친환경 에너지변환.저장소재 및 부품개발 연구센터) ;
  • 조경원 (충주대학교 신소재공학과/친환경 에너지변환.저장소재 및 부품개발 연구센터) ;
  • 홍태환 (충주대학교 신소재공학과/친환경 에너지변환.저장소재 및 부품개발 연구센터)
  • Seok, Song (Department of Materials Science and Engineering/Research Center for Sustainable ECo-Devices and Materials(ReSEM), Chungju National University) ;
  • Cho, Kyoung-Won (Department of Materials Science and Engineering/Research Center for Sustainable ECo-Devices and Materials(ReSEM), Chungju National University) ;
  • Hong, Hae-Whan (Department of Materials Science and Engineering/Research Center for Sustainable ECo-Devices and Materials(ReSEM), Chungju National University)
  • 발행 : 2007.03.15

초록

Hydrogen has a high potential to be a renewable substitute for fossil fuels, because of its high gravimetric energy density and environment friendliness. In particular, Magnesium have attracted much interest since their hydrogen capacity exceeds that of known metal hydrides. One of the approaches to improve the kinetic is addition of metal oxide. In this paper, the effect of $Fe_2O_3$ concentration on the kinetics of Mg hydrogen absorption reaction was investigated. $MgH_x-Fe_2O_3$ composites have been synthesized by hydrogen induced mechanical alloying. The powder synthesized was characterized by XRD, SEM and simultaneous TG, DSC analysis. The hydrogenation behaviors were evaluated by using a sievert's type automatic PCT apparatus. Absorption and desorption kinetics of Mg catalyzed with 5,10 mass% $Fe_2O_3$ are determined at 423, 473, 523, 573, 623K.

키워드

참고문헌

  1. G. Barkhordarian, T. Klassen, R. Bormann, Scripta Mater. Vol. 49, 2003, pp. 213-217 https://doi.org/10.1016/S1359-6462(03)00259-8
  2. A.R. Yavari, A LeMoulec, F.R. de Castro, S. Deledda, O. Friedrichs, W.J. Botta, G. Vaughan, T. Klassen, A Fernandez, A. Kvick, Scripta Mater. Vol. 52, 2005, pp. 719-724 https://doi.org/10.1016/j.scriptamat.2004.12.020
  3. J-L. Bobet, F.J. Castro, B. Chevalier, Scripta Mater. Vol. 52, 2005, pp. 33-37 https://doi.org/10.1016/j.scriptamat.2004.09.001
  4. J-L. Bobet, B. Chevalier, M.Y. Song, B. Damet, J. Alloys Compd. Vol. 356-357, 2003, pp. 570-574 https://doi.org/10.1016/S0925-8388(02)01279-3
  5. M.Y. Song, I.H. Kwon, J.-S. Bae, Int. J. Hydrogen Energy, Vol. 30, 2005, pp. 1107-1111 https://doi.org/10.1016/j.ijhydene.2004.10.019
  6. J.F. Pelletier, J. Huot, M. Sutton, R. Schulz, A.R. Sandy, L.B. Luria, S.G.J. Mochrie, Phys. Rev. B, Vol. 63, 2001, p. 052103 https://doi.org/10.1103/PhysRevB.63.052103
  7. C.X. Shang, M. Bououdina, Y. Song, Z.X Guo, Int. J. Hydrogen Energy, Vol. 29, 2004, pp. 73-80 https://doi.org/10.1016/S0360-3199(03)00045-4
  8. W. Oelerich, T. Klassen, R. Bonnann, J. Alloys Compd., Vol. 315, 2001, pp. 237-242 https://doi.org/10.1016/S0925-8388(00)01284-6
  9. G. Laing, J. Huot, S. Boily, A. Van Neste, R. Schulz, J. Alloys Compd., Vol. 291, 1999, pp. 295-299 https://doi.org/10.1016/S0925-8388(99)00268-6
  10. G. Laing, J. Huot, S. Boily, A. Van Neste, R. Schulz, J. Alloys Compd., Vol. 292, 1999, pp. 247-252 https://doi.org/10.1016/S0925-8388(99)00442-9
  11. Z.G. Huang, Z.P. Guo, A Calka, D. Wexler, C. Lukey, H.K. Liu, J. Alloys Compd., Vol. 422, 2006, pp. 299-304 https://doi.org/10.1016/j.jallcom.2005.11.074