DOI QR코드

DOI QR Code

Fermented Ginseng with Bifidobacterium Inhibits Angiogenesis of Human Umbilical Endothelial Cells in vitro and in vivo

  • Published : 2007.06.30

Abstract

Ginseng is a widely-used alternative medicine for the treatment of cancer, diabetes, and cardiovascular diseases. Active components of P. ginseng, absorbed through gastrointestinal tract are the fermented ginsenosides by intestinal microorganisms. In the present study, we investigated the inhibitory effects of fermented ginseng with bifidobacterium (FGb) on the angiogenesis by analyzing in vitro tube formation and invasion assay using human umbilical vein endothelial cells (HUVECs), and in vivo angiogenesis using chick chorioallantoic membrane (CAM) assay. Treatment with FGb inhibited tube-like structure formation in a concentration-dependent manner. In addition, FGb significantly suppressed HUVEC invasion through Matrigel. Moreover, FGb dosedependently inhibited VEGF-induced angiogenesis in a CAM assay. These results suggest that FGb is a valuable anti-angiogenic remedy.

Keywords

References

  1. Akao, T., Kida, H., Kanaoka, M., Hattori, M. and Kobashi, K. (1998). Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J. Pharm. Pharmacol. 50, 1155-1160 https://doi.org/10.1111/j.2042-7158.1998.tb03327.x
  2. Blouw, B., Song, H., Tihan, T., Bosze, J., Ferrara, N., Gerber, H.P., Johnson, R.S. and Bergers, G.. (2003). The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell. 4, 133-146 https://doi.org/10.1016/S1535-6108(03)00194-6
  3. Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182-1186 https://doi.org/10.1056/NEJM197111182852108
  4. Hasegawa, H., Sung, J.H., Matsumiya, S., Uchiyama, M., Inoue, Y., Kasai, R. and Yamasaki, K. (1995). Reversal of daunomycin and vinblastin resistance in multidrug resistant P388 leukemia in vitro through enhanced cytotoxicity by triterpenoids. Planta Med. 61, 409-413 https://doi.org/10.1055/s-2006-958126
  5. Hasegawa, H., Sung, J.H., Matsumiya, S. and Uchiyama, M. (1996). Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med. 62, 453-457 https://doi.org/10.1055/s-2006-957938
  6. Hasegawa, H., Sung, J.H. and Huh J.D. (1997a). Ginseng intestinal bacteria metabolite IH901 as a new antimetastatic agent. Arch. Pharm. Res. 20, 539-544 https://doi.org/10.1007/BF02975208
  7. Hasegawa, H., Sung, J.H. and Benno, Y. (1997b). Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med. 63, 436-440 https://doi.org/10.1055/s-2006-957729
  8. Hasegawa, H., Lee, K.S., Nagaoka, T., Tezuka, Y., Uchiyama, M., Kadota, S. and Saiki, I. (2000). Pharmacokinetics of ginsenoside deglycosylated by intestinal bacteria and its transformation to biologically active fatty acid esters. Biol. Pharm. Bull. 23, 298-304 https://doi.org/10.1248/bpb.23.298
  9. Isner, J.M. and Asahara, T. (1999). Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J. Clin. Invest. 103, 1231-1236 https://doi.org/10.1172/JCI6889
  10. Jin, J., Shahi, S., Kang, H.K., van Veen, H.W. and Fan, T.P. (2006). Metabolites of ginsenosides as novel BCRP inhibitors. Biochem. Biophys. Res. Commun. 345, 1308-1314 https://doi.org/10.1016/j.bbrc.2006.04.152
  11. Karikura, M., Miyase, T., Tanizawa, H., Taniyama, T. and Takino, Y. (1991). Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VII. Comparison of the decomposition modes of $ginsenoside-Rb_1$ and -$Rb_2$ in the digestive tract of rats. Chem. Pharm. Bull. (Tokyo). 39, 2357-2361 https://doi.org/10.1248/cpb.39.2357
  12. Leung, K.W., Pon, Y.L., Wong, R.N. and Wong, A.S. (2006). Ginsenoside-Rg1 induces vascular endothelial growth factor expression through the glucocorticoid receptor-related phosphatidylinositol 3-kinase/Akt and beta-catenin/T-cell factordependent pathway in human endothelial cells. J. Biol. Chem. 281, 36280-36288 https://doi.org/10.1074/jbc.M606698200
  13. Liang, H.C., Chen, C.T., Chang, Y., Huang, Y.C., Chen, S.C. and Sung, H.W. (2005). Loading of a novel angiogenic agent, ginsenoside Rg1 in an acellular biological tissue for tissue regeneration. Tissue Eng. 11, 835-846 https://doi.org/10.1089/ten.2005.11.835
  14. Lin, C.M., Chang, H., Chen, Y.H., Li, S.Y., Wu, I.H. and Chiu, J.H. (2006). Protective role of wogonin against lipopolysaccharide-induced angiogenesis via VEGFR-2, not VEGFR-1. Int. Immunopharmacol. 6, 1690-1698 https://doi.org/10.1016/j.intimp.2006.07.003
  15. Liu, C.X. and Xiao, P.G., (1992). Recent advances on ginseng research in China. Int. Immunopharmacol.36, 27-38
  16. Liu, W.K., Xu, S.X. and Che, C.T. (2000). Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci. 67, 1297-1306 https://doi.org/10.1016/S0024-3205(00)00720-7
  17. Mochizuki, M., Yoo, Y.C., Matsuzawa, K., Sato, K., Saiki, I., Tono-oka, S., Samukawa, K. and Azuma, I. (1995). Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-$Rb_{2}$, 20(R)- and 20(S)-ginsenoside-$Rg_{3}$, of red ginseng. Biol. Pharm. Bull. 18, 1197-1202 https://doi.org/10.1248/bpb.18.1197
  18. Mousa, S.A., Mohamed, S., Wexler, E.J. and Kerr, J.S. (2005). Antiangiogenesis and anticancer efficacy of TA138, a novel alphavbeta3 antagonist. Anticancer Res. 25, 197-206
  19. Rosenblatt, M.I. and Azar, D.T. (2006). Anti-angiogenic therapy: Prospects for treatment of ocular tumors. Semin. Ophthalmol. 21, 151-160 https://doi.org/10.1080/08820530500350787
  20. Sengupta, S., Toh, S.A., Sellers, L.A., Skepper, J.N., Koolwijk, P., Leung, H.W., Yeung, H.W., Wong, R.N., Sasisekharan, R. and Fan, T.P. (2004). Modulating angiogenesis: the yin and the yang in ginseng. Circulation. 110, 1219-1225 https://doi.org/10.1161/01.CIR.0000140676.88412.CF
  21. Shin, H.R., Kim, J.Y., Yun, T.K., Morgan, G. and Vainio, H. (2000). The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control. 11, 565-576 https://doi.org/10.1023/A:1008980200583
  22. Shinkai, K., Akedo, H., Mukai, M., Imamura, F., Isoai, A., Kobayashi, M. and Kitagawa, I. (1996). Inhibition of in vitro tumor cell invasion by ginsenoside $Rg_{3}$. Jpn. J. Cancer Res. 87, 357-362 https://doi.org/10.1111/j.1349-7006.1996.tb00230.x
  23. Tanizawa, H., Karikuma, M., Miyase, T. and Takino, Y. (1993). Studies on the metabolism and/or decomposition and distribution of ginsenoside $Rb_{2}$ in rats. Proc. 6th Int. Ginseng Symp. Seoul. p.187-194
  24. Xu, Q.F., Fang, X.L. and Chen, D.F. (2003). Pharmacokinetics and bioavailability of ginsenoside $Rb_{1}$ and $Rg_{1}$ from Panax notoginseng in rats. J. Ethnopharmacol. 84, 187-192 https://doi.org/10.1016/S0378-8741(02)00317-3
  25. Yue, P.Y., Wong, D.Y., Wu, P.K., Leung, P.Y., Mak, N.K., Yeung, H.W., Liu, L., Cai, Z., Jiang, Z.H., Fan, T.P. and Wong, R.N. (2006). The angiosuppressive effects of 20(R)-ginsenoside $Rg_{3}$. Biochem. Pharmacol. 72, 437-445 https://doi.org/10.1016/j.bcp.2006.04.034
  26. Yun, T.K., Lee, Y.S., Lee, Y.H., Kim, S.I. and Yun, H.Y. (2001). Anticarcinogenic effect of Panax ginseng C.A. Meyer and identification of active compounds. J. Korean Med. Sci. 16, S6-18 https://doi.org/10.3346/jkms.2001.16.S.S6

Cited by

  1. Microbial Conversion of Ginsenoside from the Extract of Korean Red Ginseng (Panax ginseng) by Lactobacillus sp. vol.15, pp.2, 2010, https://doi.org/10.3746/jfn.2010.15.2.105
  2. Flavonoid content, free radical scavenging and increase in xanthine oxidase inhibitory activity in Galgeun-tang following fermentation with Lactobacillus plantarum vol.10, pp.5, 2014, https://doi.org/10.3892/mmr.2014.2487