DOI QR코드

DOI QR Code

Neurotrophic Factors Mediate Memory Enhancing Property of Ethanolic Extract of Liriope platyphylla in Mice

  • Mun, Jung-Hyun (Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute) ;
  • Lee, Sang-Gon (Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute) ;
  • Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Jung, Ji-Wook (Department of Herbal Medicinal Resource, College of Health and Welfare) ;
  • Yoon, Byung-Hoon (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Shin, Bum-Young (Department of Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute) ;
  • Kim, Sun-Ho (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Ryu, Jong-Hoon (Department of Oriental Pharmaceutical Science, Department of Life and Nanopharmaceutical Science, Kyung Hee University, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy)
  • Published : 2007.06.30

Abstract

The roots of Liriope platyphylla (Liliaceae) are widely used in traditional Chinese medicine. In the present study, we investigated the effects of ethanol (70%) extract of the roots of Liriope platyphylla (ELP70) on learning and memory using behavioral and immunohistochemical methods in mice. Control animals were treated with vehicle (10% Tween 80). With sub-chronic treatments of ELP70 (p.o.) for 14 days, the latency time was significantly increased compared with that of the vehicle-treated control group (50, 100 and 200 mg/kg; P<0.05). Moreover, immunopositive cells for brain derived neurotrophic factor (BDNF) were significantly increased in the hippocapmpal dentate gyrus and CA1 regions after ELP70 treatments for 14 days (50, 100 and 200 mg/kg; P < 0.05). In addition, those cells for nerve growth factor (NGF) were also increased in the hippocapmpal dentate gyrus region (50, 100 and 200 mg/kg; P<0.05). These results suggest that the sub-chronic administration of ELP70 improves learning and memory, and that their beneficial effects are mediated, in part, by the enhancement of BDNF or NGF expression.

Keywords

References

  1. Alonso, M., Vianna, M.R., Izquierdo, I., Medina, J.H. (2002). Signaling mechanisms mediating BDNF modulation of memory formation in vivo in the hippocampus. Cell. Mol. Neurobiol. 22, 663-674 https://doi.org/10.1023/A:1021848706159
  2. Alsina, B., Vu, T., Cohen-Cory, S. (2001). Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat. Neurosci. 4, 1093-1101 https://doi.org/10.1038/nn735
  3. Asztely, F., Kokaia, M., Olofsdotter, K., Ortegren, U., Lindvall, O. (2000). Afferent-specific modulation of short-term synaptic plasticity by neurotrophins in dentate gyrus. Eur. J. Neurosci. 12, 662-669 https://doi.org/10.1046/j.1460-9568.2000.00956.x
  4. Barde, Y.A. (1994). Neurotrophins: a family of proteins supporting the survival of neurons. Prog. Clin. Biol. Res. 390, 45-56
  5. Boulanger, L., Poo, M.M. (1999). Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nat. Neurosci. 2, 346-351 https://doi.org/10.1038/7258
  6. Bruno, M.A., Clarke, P.B., Seltzer, A., Quirion, R., Burgess, K., Cuello, A.C., Saragovi, H.U. (2004). Long-lasting rescue of age-associated deficits in cognition and the CNS cholinergic phenotype by a partial agonist peptidomimetic ligand of TrkA. J. Neurosci. 24, 8009-8018 https://doi.org/10.1523/JNEUROSCI.1508-04.2004
  7. Cahill, C.M., Dray, A., Coderre, T.J. (2003). Intrathecal nerve growth factor restores opioid effectiveness in an animal model of neuropathic pain. Neuropharmacology 45, 543-552 https://doi.org/10.1016/S0028-3908(03)00192-8
  8. Chen, K., Nishimura, M., Armanini, M., Crowley, C., Spencer, S., Phillips, H. (1997). Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J. Neurosci. 17, 7288-7296
  9. Cirulli, F., Berry, A., Chiarotti, F., Alleva, E. (2004). Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-maze. Hippocampus. 14, 802-807 https://doi.org/10.1002/hipo.10220
  10. Desai, N.S., Rutherford, L.C., Turrigiano, G.G. (1999). BDNF regulates the intrinsic excitability of cortical neurons. Learn. Mem. 6, 284-291
  11. Figurov, A., Pozzo-Miller, L.D., Olafsson, P., Wang, T., Lu, B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature. 381, 706-709 https://doi.org/10.1038/381706a0
  12. Gooney, M., Shaw, K., Kelly, A., O'Mara, S.M., Lynch, M.A. (2002). Long-term potentiation and spatial learning are associated with increased phosphorylation of TrkB and ERK in dentate gyrus: evidence for a role for BDNF. Behav. Neurosci. 116, 455-463 https://doi.org/10.1037/0735-7044.116.3.455
  13. Gutierrez, H., Miranda, M.I., Bermudez-Rattoni, F. (1997). Learning impairment and cholinergic deafferentation after cortical nerve growth factor deprivation. J. Neurosci. 17, 3796-3803
  14. Hur, J., Lee, P., Kim, J., Kim, A.J., Kim, H., Kim, S.Y. (2004). Induction of nerve growth factor by butanol fraction of Liriope platyphylla in C6 and primary astrocyte cells. Biol. Pharm. Bull. 27, 1257-1260 https://doi.org/10.1248/bpb.27.1257
  15. Ikegaya, Y., Ishizaka, Y., Matsuki, N. (2002). BDNF attenuates hippocampal LTD via activation of phospholipase C: implications for a vertical shift in the frequency-response curve of synaptic plasticity. Eur. J. Neurosci. 16, 145-148 https://doi.org/10.1046/j.1460-9568.2002.02051.x
  16. Kafitz, K.W., Rose, C.R., Thoenen, H., Konnerth, A. (1999). Neurotrophin-evoked rapid excitation through TrkB receptors. Nature. 401, 918-921 https://doi.org/10.1038/44847
  17. Kang, H., Welcher, A.A., Shelton, D., Schuman, E.M. (1997). Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron. 19, 653-664 https://doi.org/10.1016/S0896-6273(00)80378-5
  18. Kang, H.J., Schuman, E.M. (1995). Neurotrophin-induced modulation of synaptic transmission in the adult hippocampus. J. Physiol. Paris. 89, 11-22 https://doi.org/10.1016/0928-4257(96)80547-X
  19. Kim, D.H., Hung, T.M., Bae, K.H., Jung, J.W., Lee, S., Yoon, B.H., Cheong, J.H., Ko, K.H., Ryu, J.H. (2006). Gomisin A improves scopolamine-induced memory impairment in mice. Eur. J. Pharmacol. 542, 129-135 https://doi.org/10.1016/j.ejphar.2006.06.015
  20. Kim, S.W., Chang, I.M., Oh, K.B. (2002). Inhibition of the bacterial surface protein anchoring transpeptidase sortase by medicinal plants. Biosci. Biotechnol. Biochem. 66, 2751-2754 https://doi.org/10.1271/bbb.66.2751
  21. Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H., Bonhoeffer, T. (1995). Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. 92, 8856-8860 https://doi.org/10.1073/pnas.92.19.8856
  22. Leibrock, J., Lottspeich, F., Hohn, A., Hofer, M., Hengerer, B., Masiakowski, P., Thoenen, H., Barde, Y.A. (1989). Molecular cloning and expression of brain-derived neurotrophic factor. Nature. 341, 149-152 https://doi.org/10.1038/341149a0
  23. Lindsay, R.M., Wiegand, S.J., Altar, C.A., DiStefano, P.S. (1994). Neurotrophic factors. Trends Neurosci. 17, 182-1903 https://doi.org/10.1016/0166-2236(94)90099-X
  24. Linnarsson, S., Bjorklund, A., Ernfors, P. (1997). Learning deficit in BDNF mutant mice. Eur. J. Neurosci. 9, 2581-2587 https://doi.org/10.1111/j.1460-9568.1997.tb01687.x
  25. Lom, B., Cohen-Cory, S. (1999). Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J. Neurosci. 19, 9928-9938
  26. Lohof, A.M., Ip, N.Y., Poo, M.M. (1993). Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature. 363, 350-353 https://doi.org/10.1038/363350a0
  27. Maffei, L. (2002). Plasticity in the visual system: role of neurotrophins and electrical activity. Arch. Ital. Biol. 140, 341-346
  28. McAllister, A.K., Katz, L.C., Lo, D.C. (1997). Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron. 18, 767-778 https://doi.org/10.1016/S0896-6273(00)80316-5
  29. Mizuno, M., Yamada, K., Olariu, A., Nawa, H., Nabeshima, T. (2000). Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J. Neurosci., 20, 7116-7121
  30. Nguyen, P.V., Kandel, E.R. (1996). A macromolecular synthesisdependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J. Neurosci. 16, 3189-3198
  31. Rutherford, L.C., Nelson, S.B., Turrigiano, G.G. (1998). BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron. 21, 521-530 https://doi.org/10.1016/S0896-6273(00)80563-2
  32. Schinder, A.F., Poo, M.M. (2000). The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. 23, 639-645 https://doi.org/10.1016/S0166-2236(00)01672-6
  33. Seil, F.J., Drake-Baumann, R. (2000). TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. J. Neurosci. 20, 5367-5373
  34. Shimada, A., Mason, C.A., Morrison, M.E. (1998). TrkB signaling modulates spine density and morphology independent of dendrite structure in cultured neonatal Purkinje cells. J. Neurosci. 18, 8559-8570
  35. Thoenen, H. (1995). Neurotrophins and neuronal plasticity. Science. 270, 593-598 https://doi.org/10.1126/science.270.5236.593
  36. Vicario-Abejon, C., Collin, C., McKay, R.D., Segal, M. (1998). Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J. Neurosci. 18, 7256-7271
  37. Yacoubian, T.A., Lo, D.C. (2000). Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat. Neurosci. 3, 342-349 https://doi.org/10.1038/73911

Cited by

  1. The Extracts from Liriope platyphylla Significantly Stimulated Insulin Secretion in the HIT-T15 Pancreatic β-Cell Line vol.20, pp.7, 2010, https://doi.org/10.5352/JLS.2010.20.7.1027
  2. Spicatoside A enhances memory consolidation through the brain-derived neurotrophic factor in mice vol.572, 2014, https://doi.org/10.1016/j.neulet.2014.04.034
  3. Effects of Steaming Time and Frequency for Manufactured RedLiriope platyphyllaon the Insulin Secretion Ability and Insulin Receptor Signaling Pathway vol.27, pp.2, 2011, https://doi.org/10.5625/lar.2011.27.2.117