Effect of Pluronic F-68 on the Post-thaw Growth of Cryopreserved Transgenic Nicotiana tabacum Cells

Pluronic F-68이 동결보존된 형질전환 담배세포의 해동 후 세포생장에 미치는 영향

  • Cheon, Su-Hwan (Department of Biological Engineering, Inha University) ;
  • Lee, Kyoung-Hoon (Department of Biological Engineering, Inha University) ;
  • Kwon, Jun-Young (Department of Biological Engineering, Inha University) ;
  • Ryu, Hyun-Nam (Department of Biological Engineering, Inha University) ;
  • Kim, Dong-Il (Department of Biological Engineering, Inha University)
  • 전수환 (인하대학교 공과대학 생물공학과) ;
  • 이경훈 (인하대학교 공과대학 생물공학과) ;
  • 권준영 (인하대학교 공과대학 생물공학과) ;
  • 류현남 (인하대학교 공과대학 생물공학과) ;
  • 김동일 (인하대학교 공과대학 생물공학과)
  • Published : 2007.10.30

Abstract

To enhance the growth of cryopreserved cells of transgenic Nicotiana tabacum, Pluronic F-68 was supplemented in a recovery medium during post-thaw period. As cryoprotective agents, 1 M sucrose, 0.5 M glycerol and 0.5 M dimethyl sulfoxide (DMSO) were added before freezing steps. The post-thaw growth of the cells was improved with Pluronic F-68, ranged from 0.1 to 10 g/L. The interactions of Pluronic F-68 with the cells were confirmed by the changes of hydrophobicity or permeability of the cells. Pluronic F-68 did not show any effect on the activity of $\beta$-glucuronidase (GUS) in all treatments. Therefore, the addition of Pluronic F-68 in a recovery medium was found to be beneficial to enhance the post-thaw growth of cryopreserved transgenic tobacco cells without affecting the production of recombinant protein.

본 연구에서는 Pluronic F-68을 해동 후 회복배지에 적용하여, 동결보존된 형질전환 식물세포의 생장 증진을 도모하였다. Pluronic F-68은 세포표면의 소수성을 감소시켰을 뿐만 아니라, 세포의 투과성을 증진시켜 세포와 직접 상호 작용할 수 있음을 관찰하였다. 또한 Pluronic F-68의 첨가에 의해 재조합단백질의 발현에 부정적인 영향을 보이지 않음을 확인하였다. 따라서 동결보존시 해동 후 회복배지에 Pluronic F-68의 첨가는 식물세포의 신속하고 효율적인 대량 현탁배양을 가능하게 할 수 있다.

Keywords

References

  1. Hellwig, S., J. Drossardk, R. M. Twyman, and R. Fisher (2004), Plant cell cultures for the production of recombinant proteins, Nature Biotechnol. 22, 1415-1422 https://doi.org/10.1038/nbt1027
  2. Ma, J. K. C., P. W. M. Drake, and P. Christou (2003), The production of recombinant pharmaceutical protein in plants, Nature Rev. 4, 794-805 https://doi.org/10.1038/nrg1177
  3. Schmale, K., T. Rademacher, R. Fischer, and S. Hellwig (2006), Towards industrial usefulness, cryo-cell-banking of transgenic BY-2 cell cultures, J. Biotechnol. 124, 302-311 https://doi.org/10.1016/j.jbiotec.2006.01.012
  4. Menges, M. and J. A. H. Murray (2004), Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures, Plant J. 37, 635-644 https://doi.org/10.1046/j.1365-313X.2003.01980.x
  5. Joshi, A. and W. L. Teng (2000), Cryopreservation of Panax ginseng cells, Plant Cell Rep. 19, 971-977 https://doi.org/10.1007/s002990000212
  6. Kuriyama, A., K. Watanabe, S. Ueno, and H. Mitsuda (1989), Inhibitory effect of ammonium ion on recovery of cryopreserved rice cells, Plant Sri. 96, 231-235
  7. Vajta, G. and M. Kuwayama (2006), Improving cryopreservation systems, Theriogenology 65, 236-244 https://doi.org/10.1016/j.theriogenology.2005.09.026
  8. Harding, K. (2004), Genetic integrity of cryopreserved plant cells: a review, Cryoletters 25, 3-22
  9. Murhammer, D. W. and C. F. Goochee (1990), Structural features of nonionic polyglycol polymer molecules responsible for the protective effect in sparged animal cell bioreactor, Biotechnol. Prog. 6, 142-148 https://doi.org/10.1021/bp00002a008
  10. Murhammcr, D. W. and C. F. Goochee (1988), Scaleup of insect cell culture: protective effects of Pluronic F-68, Bio/technology 6, 1411-1418 https://doi.org/10.1038/nbt1288-1411
  11. Palomares, L. A., M. Gonzalez, and O. T. Ramirez (2000), Evidence of Pluronic F-68 direct interaction with insect cells: impact on shear protection, recombinant protein, and baculovirus production, Enzyme Microb. Technol. 26, 324-331 https://doi.org/10.1016/S0141-0229(99)00176-3
  12. Anthony, P., N. B. Jelodar, K. C. Lowe, J. B. Power, and M. R. Davey (1996), Pluronic F-68 increases the post-thaw growth of cryopreserved plant cells, Cryobiology 33, 508-514 https://doi.org/10.1006/cryo.1996.0054
  13. Dewez, J. L., V. Berger, Y. J. Schneider, and P. G. Rouxhet (1997), Influence of substrate hydrophobicity on the adsorption of collagen in the presence of Pluronic F-68, albumin, or calf serum, J. Coli. Interface Sri. 191, 1-10 https://doi.org/10.1006/jcis.1997.4908
  14. Wu, J., Q. Ruan, and H. Y. P. Lam (1997), Effects of surface-active medium additives on insect cell surface hydrophobicity relating to cell protection against bubble damage, Enzyme Microb. Technol. 21, 341-348 https://doi.org/10.1016/S0141-0229(97)00009-4
  15. Bassetti, L. and J. Tramper (1995), Increased anthraquinone production by Morinda citrifolia in a two-phase system with Pluronic F-68. Enzyme Microb. Technol. 17, 353-358 https://doi.org/10.1016/0141-0229(94)00059-X
  16. Lanouar, L., K. C. Lowe, and B. 1 Mulligan (1996), Yeast responses to nonionic smfactants. Enzyme Microb. Technol. 18, 433-438 https://doi.org/10.1016/0141-0229(95)00122-0
  17. Chen, T. H., K. K. Kartha, N. L. Leung, W. G. Kurz, K. B. Chatson, and F. Constabel (1984), Cryopreservation of alkaloid-producing cell cultures of Periwinkle (Catharanthus roseus). Plant Physiol. 75, 726-731 https://doi.org/10.1104/pp.75.3.726
  18. Anthony, P., M. R. Davey, J. B. Power, C. Washington, and K. C. Lowe (1994), Synergistic enhancement of protoplast growth by oxygenated perfluorocarbon and Pluronic F-68, Plant Cell Rep. 13, 251-255