Development of a Biosensor Using Electrochemically-Active Bacteria [EAB] for Measurements of BOD [Biochemical Oxygen Demand]

전기화학적 활성 미생물을 이용한 BOD 측정용 바이오센서의 개발

  • Yoon, Seok-Min (Department of Microbial Engineering, Konkuk University) ;
  • Choi, Chang-Ho (Department of Microbial Engineering, Konkuk University) ;
  • Kwon, Kil-Koang (Department of Microbial Engineering, Konkuk University) ;
  • Jeong, Bong-Geun (Department of Microbial Engineering, Konkuk University) ;
  • Hong, Seok-Won (Center for Environmental Technology Research, Korea Institute of Science and Technology) ;
  • Choi, Yong-Su (Center for Environmental Technology Research, Korea Institute of Science and Technology) ;
  • Kim, Hyung-Joo (Department of Microbial Engineering, Konkuk University)
  • 윤석민 (건국대학교 공과대학 미생물공학과) ;
  • 최창호 (건국대학교 공과대학 미생물공학과) ;
  • 권길광 (건국대학교 공과대학 미생물공학과) ;
  • 정봉근 (건국대학교 공과대학 미생물공학과) ;
  • 홍석원 (한국과학기술연구원) ;
  • 최용수 (한국과학기술연구원) ;
  • 김형주 (건국대학교 공과대학 미생물공학과)
  • Published : 2007.12.31

Abstract

A biosensor using electrochemically-active bacteria (EAB) enriched in three-electrode electrochemical cell, was developed for the determination of biochemical oxygen demand (BOD) in wastewater. In the electrochemical cell, the positively poised working electrode with applying a potential of 0.7 V was used as an electron acceptor for the EAB. The experimental results using artificial and raw wastewater showed that the current pattern generated by the biosensor and its Coulombic yield were proportional to the concentration of organic matter in wastewater. The correlation coefficients of BOD vs Coulombic yield and $BOD_5$ vs Coulombic yield were 0.99 and 0.98, respectively. These results indicate that the biosensor enriched with the EAB capable of transferring electrons directly toward the electrode can be utilized as a water-quality monitoring system due to a quick and accurate response.

본 연구는 3-전극계와 전기화학적 활성미생물 (EAB)을 이용한 BOD 측정용 바이오센서의 개발에 대한 것이다. 바이오센서의 측정능력 조사를 위하여, 인공폐수 및 실제폐수가 사용되었다. 폐수 시료의 유입조건은 유입속도 2 mL/min, 유입시간 10분, 유입간격은 50분으로 설정하였고, EAB의 전자수용체로 정전압이 적용된 작업전극을 사용하였으며 이때, 정전압기 (potentiostat)를 이용하여 +0.7 V를 인가하여 주었다. 인공폐수와 실제폐수를 이용한 BOD 측정의 정확성 분석결과, BOD 변화에 대해 발생전류 역시 비례적으로 변화하는 것을 확인하였으며 각각 0.99 및 0.98의 높은 상관계수 (BOD vs. Coulombic yield, $BOD_5$ vs. Coulombic yield)를 가지는 것을 확인하였다. BOD (혹은 $BOD_5$) 변화에 대한 반응시간은 30분 이내로 확인되어 실시간 측정에 적합함을 확인할 수 있었다. 이러한 결과들을 토대로 EAB 및 3-전극계를 이용한 폐수의 BOD 측정용 센서의 구성이 가능함을 확인하였다.

Keywords

References

  1. Gunatilaka, A. and J. Dreher (2003), Use of real-time data in environmental monitoring: Current practice, Wat Sci Tech. 47, 53-61
  2. Karube, I., T. Matsunga, S. Mitsuda, and S. Suzuki (1977), Microbial electrode BOD sensors, Biotechnol Bioeng. 19, 1535-1547 https://doi.org/10.1002/bit.260191010
  3. APHA, AWWA, WPCF (1998), Standard Methods for the examination of Water and Wastewater, 20th Ed, Washington, D.C.
  4. Pasco, N., K. Baronian, C. Jeffries, and J. Hay (2000), Biochemical mediator demand a novel rapid alternative for measuring biochemical oxygen demand, Appl Microbiol Biotechnol. 53, 613-618 https://doi.org/10.1007/s002530051666
  5. Thomas, O., F. Theraulaz, V. Cerda, D. Constant and P. Quevauviller (1997), Wastewater quality monitoring, Trends Anal Chem. 16, 419-424 https://doi.org/10.1016/S0165-9936(97)82859-2
  6. Kulys, J. and K. Kadzianskiene (1980), Yeast BOD sensor, Biotechnol Bioeng. 22, 221-226 https://doi.org/10.1002/bit.260220116
  7. Liu, J., L. Bjornsson, and B. Mattiasson (2000), Immobilised activated sludge based biosensor for biochemical oxygen demand measurement, Biosens Bioelectron. 14, 883-893 https://doi.org/10.1016/S0956-5663(99)00064-0
  8. Sangeetha, S., G. Sugandhi, M. Murugesan, V. Murali Mudhav, S. Berch- mans, R. Rajasekar, S. Rajasekar, D. Jeyakumar, and G. Prabhakara Rao (1996), Torulopsis candida based sensor for the estimation of biochemical oxygen demand and its evaluation, Electroanalysis 8, 698-707 https://doi.org/10.1002/elan.1140080718
  9. Tan, T. C., F. Li, and K. G. Neoh (1993), Measurement of BOD by initial rate of response of a microbial sensor, Sens Actuators. B10, 137-142
  10. Yang, Z., H. Suzuki, S. Sasaki, S. McNiven, and I. Karube (1997), Comaprison of the dynamic transient- and steady-state measuring methods in a batch type BOD sensing system, Sens Actuators B45, 217-222
  11. Chang, I. S., J. K. Hang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim (2004), Continuous determination of biochemical oxygen demand sensor using a microbial fuel cell type biosensor, Biosens Bioelectron. 17, 607-613
  12. Chang, I. S., J. K. Moon, and B. H. Kim (2005), Improvement of microbial fuel cell performance as a BOD sensor using respiratory inhibitors, Biosens Bioelectron. 20, 1856-1859 https://doi.org/10.1016/j.bios.2004.06.003
  13. Chang, I. S., H. S. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim (2006), Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells, J Microbiol Biotechnol. 16(2), 163-177
  14. Kang, K. H., J. K. Jang, T. H. Pham, H. S. Moon, I. S. Chang, and B. H. Kim (2003), A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor, Biotechnol Lett. 25, 1357-1361 https://doi.org/10.1023/A:1024984521699
  15. Kim, B. H., I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim (2003), Novel BOD(biological oxygen demand) sensor using a mediator-less microbial fuel cell, Biotechnol Lett. 25, 541-545 https://doi.org/10.1023/A:1022891231369
  16. Kim, M., S. M. Youn, S. H. Shin, J. G. Jang, S. H. Han, M. S. Hyun, G. M. Gadd, and H. J. Kim (2003), Practical field application of a novel BOD monitoring system, J Environ Monit. 5, 640-643 https://doi.org/10.1039/b304583h
  17. DiChristina, T. J. and E. F. DeLong (1994), Isolation of anaerobic respiratory mutants of Shewanella putrefaciens and genetic analysis of mutants deficient in anaerobic growth on $Fe^{3+}$, J Bacteriol. 176, 1468-1474 https://doi.org/10.1128/jb.176.5.1468-1474.1994
  18. Kim, G. T., G. Webster, J. W. T. Wimpenny, B. H. Kim, H. J. Kim, and A. J. Weightman (2006), Bacterial community structure, compartmentalization and activity in a microbial fuel cell, J Appl Microbiol. 101(3), 698-710 https://doi.org/10.1111/j.1365-2672.2006.02923.x
  19. Lovley, D. R., S. J. Giovannoni, D. C. White, J. E. Champine, E. J. Phillips, Y. A. Gorby, and S. Goodwin (1993), Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals, Arch Microbiol. 159, 336-344 https://doi.org/10.1007/BF00290916
  20. Myers, C. R. and J. M. Myers (1992), Localization of cytochromes to the outer membranes of anaerobically grown Shewanella putrefaciens MR-1, J Bacteriol. 174, 3429-3438 https://doi.org/10.1128/jb.174.11.3429-3438.1992
  21. Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung (2004), Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell, Appl Microbiol Biotechnol. 63, 672-681 https://doi.org/10.1007/s00253-003-1412-6
  22. Moon, H., I. S. Chang, J. K. Jang, K. S. Kim, J. Lee, R. W. Lovitt, and B. H. Kim (2005), On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell, J Microbiol Biotechnol. 15, 192-196
  23. Yoon, S. M., C. H. Choi, M. Kim, M. S. Hyun, S. H. Shin, D. H. Yi, and H. J. Kim (2007), Enrichment of electrochemically active bacteria using a three-electrode electrochemical cell, J Microbiol Biotechnol. 17(1), 110-115