DOI QR코드

DOI QR Code

Effects of caffeic acid, chlorogenic acid, and EGCG on the methylation status of p16 gene in T-47D breast cancer cells

Caffeic acid, chlorogenic acid, EGCG가 유방암 세포 T-47D의 p16 유전자 DNA methylation에 미치는 영향

  • Lee, Won-Jun (Department of Exercise Science College of Human Science, Ewha Womans University)
  • 이원준 (이화여자대학교 건강과학대학 체육과학과)
  • Published : 2007.04.25

Abstract

In the present investigation, we studied the modulating effects of caffeic acid, chlorogenic acid, and (-)-epigallocatechin-3-gallate(EGCG) on the methylation status of promoter regions of cell cycle regulator, p16, in human breast cancer T-47D cells. We demonstrated that treatment of T-47D cells with caffeic acid, chlorogenic acid, or EGCG partially inhibited the methylation status of the promoter regions of p16 genes determined by methylation-specific PCR. In contrast, unmethylated p16 genes were increased with the treatment of T-47D cells with $20{\mu}M$ of caffeic acid or chlorogenic acid for 6 days. Treatment of T-47D cells with 5, 20 or $50{\mu}M$ of EGCG increased the unmethylation status of p16 gene up to 100%, and the methylation-specific bands of this gene were decreased up to 50% in a concentration-dependent manner. The finding of present study demonstrated that coffee polyphenols and EGCG have strong inhibitory effects of the cellular DNA methylation process through increased formation of S-adenosyl-homocysteine(SAH) during the catechol-O-methyltransferase (COMT)- mediated O-methylation of these dietary chemicals or an direct inhibition of the DNA methyltransferases. In conclusion, various dietary polyphenols could reverse the methylation status of p16 gene in human breast T-47D cells.

본 연구에서 사용한 coffee에 다량 함유된 caffeic acid와 chlorogenic acid, 녹차에 함유된 EGCG 성분은 암세포의 증식을 억제하는데 중요한 기능을 담당하는 세포주기 조절인자인 p16 유전자의 DNA methylation 패턴을 유방암 T-47D 세포에서 유의하게 변화시켰다. MSP를 이용하여 p16 유전자의 promoter 지역에서의 methylation상태의 변화를 살펴본 결과 caffeic acid, chlorogenic acid, EGCG는 유전자의 hypermethylation을 감소시켰으며, 이로 인해 demethylation된 p16 유전자가 증가하는 경향을 보였다. 이러한 연구 결과는 coffee 폴리페놀인 caffeic acid, chlorogenic acid와 녹차 폴리페놀인 EGCG는 세포내의 DNA methylation을 억제하는 기능을 가지는데, 이는 coffee폴리페놀과 같이 COMT 효소에 의한 methylation 부산물인 SAH의 증가에 의한 DNMT의 억제이거나, EGCG와 같이 DNMT와 직접적으로 결합하여 methylation 반응을 억제하는 mechanism에 의한 것으로 사료된다. 따라서 앞으로 이미 개발된 항암제뿐만 아니라, 부작용과 독성이 적은 식이성분에 대한 연구가 좀 더 심도 있게 이루어 져야 할 것이며, 이러한 연구들은 암이 발생되고 난 후 치료 요법으로 사용됨은 물론, 암이 발생하기 전에 사전 예방법으로도 널리 적용하는데 있어 중요한 이론적 토대를 마련할 것으로 사료된다.

Keywords

References

  1. Bestor, T. H. and V. M. Ingram. 1983. Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. Natl. Acad. Sci. USA 80, 5559-5563 https://doi.org/10.1073/pnas.80.18.5559
  2. Chim, C. S., R. Liang, C. Y. Tam and Y. L. Kwong. 2001. Methylation of p15 and p16 genes in acute promyelocytic leukemia: potential diagnostic and prognostic significance. J. Clin. Oncol. 19, 2033-2040 https://doi.org/10.1200/JCO.2001.19.7.2033
  3. Costello, J. F., M. C. Fruhwald, D. J. Smiragilia, L. J. Rush, G. P. Robertson, X. Gao, F. A. Wright, J. D. Feramisoco, P. Peltomaki, J. C. Lang, D. E. Schuller, L. Yu, C. D. Bloomfield, M. A. Caligiuri, A. Yates, R. Nishikawa, H. Su Hwang, N. J. Petrelli, X. Zhang, M. S. O'Dorisio, W. A. Held, W. K. Cavenee and C. Plass. 2000. Aberrant CpG-island methylaiton has non-random and tumour-type-specific patterns. Nat. Genet. 25, 132-138 https://doi.org/10.1038/75957
  4. Esteller, M., P. G. Corn, S. B. Baylin and J. G. Herman. 2001. A gene hypermethylation profile of human cancer. Cancer Res. 61, 3225-3229
  5. Esteller, M. 2002. CpG island hypomethylation and tumor suppressor genes: a booming present, a bright future. Oncogene 21, 5427-5440 https://doi.org/10.1038/sj.onc.1205600
  6. Esteller, M. and J. G. Herman. 2002. Cancer as an epigenetic disease: DNA methylaiton and chromatin alterations in human tumours. J. Pathol. 196, 1-7 https://doi.org/10.1002/path.1024
  7. Fang, M. Z., Y. Wang, N. Ai, Z. Hou, Y. Sun, H. Lu, W. Welsh and C. S. Yang. 2003.Tea polyphenol (-)-epigallo-catechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 63, 7563-7570
  8. Fraga, M. F., E. Ballestar, G. Montoya, P. Taysavang, P. A. Wade and M. Esteller. 2003. The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res. 31, 1765-1774 https://doi.org/10.1093/nar/gkg249
  9. Herman J. G. and S. B. Baylin. 2003. Gene silencing in cancer in association with promoter hyperrnethylaiton. N. Engl. J. Med. 349, 2042-2054 https://doi.org/10.1056/NEJMra023075
  10. Hu, C. X., I. H. Wong and L. W. Chow. 2003. Tumor--derived aberrant methylation in plasma of invasive ductal breast cancer patients: clinical implications. Oncol. Rep. 10, 1811-1815
  11. Kass, S. U., D. Pruss and A. P. Wolffe. 1997. How does DNA methylation repress transcription? Trends Genet. 13, 444-449 https://doi.org/10.1016/S0168-9525(97)01268-7
  12. Koh, J., G. H. Enders, B. D. Dynlacht and E. Harlow. 1995. Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature 375, 506-510 https://doi.org/10.1038/375506a0
  13. Lee, W. J. and B. T. Zhu. 2005. Mechanisms for the inhibition of DNA methyltransfeases by tea catechins and bioflavonoids. Mol. Pharmacol. 68, 1018-1030 https://doi.org/10.1124/mol.104.008367
  14. Lee, W. J. and B. T. Zhu. 2006. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 27, 269-277 https://doi.org/10.1093/carcin/bgi206
  15. Lukas, J., L. Aagaard, M. Strauss and J. Bartek. 1995. Oncogenic aberrations of p16INK4/CDKN2 and cyclin D1 cooperate to deregulate G1 control. Cancer Res. 55, 4818-4823
  16. Mizuno, S. I., T. Chijiwa, T. Okamura, K. Akashi, Y. Fukumaki, Y. Niho and H. Sasaki. 2001. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 97, 1172-1179 https://doi.org/10.1182/blood.V97.5.1172
  17. Momparler, R. L. and V. Bovenzi. 2000. DNA methylation and cancer. J. Cell. Physiol. 183, 145-154 https://doi.org/10.1002/(SICI)1097-4652(200005)183:2<145::AID-JCP1>3.0.CO;2-V
  18. Okano, M., D. W. Bell, D. A. Harber and E. Li. 1999. DNA methyltransfereases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257 https://doi.org/10.1016/S0092-8674(00)81656-6
  19. Palmisano, W. A., K. K. Divine, G. Saccomanno, F. D. Gilliland, S. B. Baylin, J. G. Herman and S. A. Belinsky. 2000. Predicting lung cancer by detecting aberrant promoter methylation in sputum Cancer Res. 60, 5954-5986
  20. Paz, M. F., M. F. Fraga, S. Avila, M. Guo, M. Pollan, J. G. Herman and M. A. Esteller. 2003. A systemic profile of DNA methylation in human cancer cell lines. Cancer Res. 63, 1114-1121
  21. Tate, P. H. and A. P. Bird. 1993. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev. 3, 226-231 https://doi.org/10.1016/0959-437X(93)90027-M
  22. Yang, C. S., P. Maliakal and X. Meng. 2002. Inhibition of carcinogenesis by tea. Annu. Rev. Pharmacol. Toxicol. 42, 25-54 https://doi.org/10.1146/annurev.pharmtox.42.082101.154309
  23. Zhu, B. T., E. L. Ezell and J. G. Liehr. 1994. Catechol-O-methyltransferase-catalyzed rapid O-methylation of mutagenic flavonoids. Metabolic inactivation as a possible reason for their lack of carcinogenicity in vivo. J. Biol. Chem. 269, 292-299
  24. Zhu, B. T. and J. G. Liehr. 1996. Inhibition of catechol-O-methyltransferase-catalyzed O-methylation of 2- and 4-hydroxyestradiol by quercetin. Possible role in estradiol-induced tumorigenesis. J. Biol. Chem. 271, 1357-1363 https://doi.org/10.1074/jbc.271.3.1357
  25. Zhu, B. T., U. K. Patel, M. X. Cai and A. H. Conney. 2000. O-Methylation of tea polyphenols catalyzed by human placental cytosolic catechol-O-methyltransferase. Drug Metab. Dispos. 28, 1024-1030
  26. Zhu, B. T., U. K. Patel, M. X. Cai, A. J. Lee and A. H. Conney. 2001. Rapid conversion of tea catechins to mono-methylated products by rat liver cytosolic catechol-O-methyltransferase. Xenobiotica 31, 879-890 https://doi.org/10.1080/00498250110079798