Browse > Article
http://dx.doi.org/10.5352/JLS.2007.17.4.522

Effects of caffeic acid, chlorogenic acid, and EGCG on the methylation status of p16 gene in T-47D breast cancer cells  

Lee, Won-Jun (Department of Exercise Science College of Human Science, Ewha Womans University)
Publication Information
Journal of Life Science / v.17, no.4, 2007 , pp. 522-528 More about this Journal
Abstract
In the present investigation, we studied the modulating effects of caffeic acid, chlorogenic acid, and (-)-epigallocatechin-3-gallate(EGCG) on the methylation status of promoter regions of cell cycle regulator, p16, in human breast cancer T-47D cells. We demonstrated that treatment of T-47D cells with caffeic acid, chlorogenic acid, or EGCG partially inhibited the methylation status of the promoter regions of p16 genes determined by methylation-specific PCR. In contrast, unmethylated p16 genes were increased with the treatment of T-47D cells with $20{\mu}M$ of caffeic acid or chlorogenic acid for 6 days. Treatment of T-47D cells with 5, 20 or $50{\mu}M$ of EGCG increased the unmethylation status of p16 gene up to 100%, and the methylation-specific bands of this gene were decreased up to 50% in a concentration-dependent manner. The finding of present study demonstrated that coffee polyphenols and EGCG have strong inhibitory effects of the cellular DNA methylation process through increased formation of S-adenosyl-homocysteine(SAH) during the catechol-O-methyltransferase (COMT)- mediated O-methylation of these dietary chemicals or an direct inhibition of the DNA methyltransferases. In conclusion, various dietary polyphenols could reverse the methylation status of p16 gene in human breast T-47D cells.
Keywords
polyphenols; DNA methylation; catechol-O-methyltransferase; methylation-specific PCR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhu, B. T., U. K. Patel, M. X. Cai and A. H. Conney. 2000. O-Methylation of tea polyphenols catalyzed by human placental cytosolic catechol-O-methyltransferase. Drug Metab. Dispos. 28, 1024-1030
2 Zhu, B. T., U. K. Patel, M. X. Cai, A. J. Lee and A. H. Conney. 2001. Rapid conversion of tea catechins to mono-methylated products by rat liver cytosolic catechol-O-methyltransferase. Xenobiotica 31, 879-890   DOI   ScienceOn
3 Mizuno, S. I., T. Chijiwa, T. Okamura, K. Akashi, Y. Fukumaki, Y. Niho and H. Sasaki. 2001. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 97, 1172-1179   DOI   ScienceOn
4 Momparler, R. L. and V. Bovenzi. 2000. DNA methylation and cancer. J. Cell. Physiol. 183, 145-154   DOI   ScienceOn
5 Tate, P. H. and A. P. Bird. 1993. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev. 3, 226-231   DOI   ScienceOn
6 Okano, M., D. W. Bell, D. A. Harber and E. Li. 1999. DNA methyltransfereases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257   DOI   ScienceOn
7 Palmisano, W. A., K. K. Divine, G. Saccomanno, F. D. Gilliland, S. B. Baylin, J. G. Herman and S. A. Belinsky. 2000. Predicting lung cancer by detecting aberrant promoter methylation in sputum Cancer Res. 60, 5954-5986
8 Paz, M. F., M. F. Fraga, S. Avila, M. Guo, M. Pollan, J. G. Herman and M. A. Esteller. 2003. A systemic profile of DNA methylation in human cancer cell lines. Cancer Res. 63, 1114-1121
9 Yang, C. S., P. Maliakal and X. Meng. 2002. Inhibition of carcinogenesis by tea. Annu. Rev. Pharmacol. Toxicol. 42, 25-54   DOI   ScienceOn
10 Zhu, B. T., E. L. Ezell and J. G. Liehr. 1994. Catechol-O-methyltransferase-catalyzed rapid O-methylation of mutagenic flavonoids. Metabolic inactivation as a possible reason for their lack of carcinogenicity in vivo. J. Biol. Chem. 269, 292-299
11 Zhu, B. T. and J. G. Liehr. 1996. Inhibition of catechol-O-methyltransferase-catalyzed O-methylation of 2- and 4-hydroxyestradiol by quercetin. Possible role in estradiol-induced tumorigenesis. J. Biol. Chem. 271, 1357-1363   DOI
12 Fang, M. Z., Y. Wang, N. Ai, Z. Hou, Y. Sun, H. Lu, W. Welsh and C. S. Yang. 2003.Tea polyphenol (-)-epigallo-catechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 63, 7563-7570
13 Lee, W. J. and B. T. Zhu. 2006. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 27, 269-277   DOI   ScienceOn
14 Fraga, M. F., E. Ballestar, G. Montoya, P. Taysavang, P. A. Wade and M. Esteller. 2003. The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res. 31, 1765-1774   DOI   ScienceOn
15 Herman J. G. and S. B. Baylin. 2003. Gene silencing in cancer in association with promoter hyperrnethylaiton. N. Engl. J. Med. 349, 2042-2054   DOI   ScienceOn
16 Hu, C. X., I. H. Wong and L. W. Chow. 2003. Tumor--derived aberrant methylation in plasma of invasive ductal breast cancer patients: clinical implications. Oncol. Rep. 10, 1811-1815
17 Kass, S. U., D. Pruss and A. P. Wolffe. 1997. How does DNA methylation repress transcription? Trends Genet. 13, 444-449   DOI   ScienceOn
18 Koh, J., G. H. Enders, B. D. Dynlacht and E. Harlow. 1995. Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature 375, 506-510   DOI   ScienceOn
19 Lee, W. J. and B. T. Zhu. 2005. Mechanisms for the inhibition of DNA methyltransfeases by tea catechins and bioflavonoids. Mol. Pharmacol. 68, 1018-1030   DOI   ScienceOn
20 Lukas, J., L. Aagaard, M. Strauss and J. Bartek. 1995. Oncogenic aberrations of p16INK4/CDKN2 and cyclin D1 cooperate to deregulate G1 control. Cancer Res. 55, 4818-4823
21 Esteller, M., P. G. Corn, S. B. Baylin and J. G. Herman. 2001. A gene hypermethylation profile of human cancer. Cancer Res. 61, 3225-3229
22 Chim, C. S., R. Liang, C. Y. Tam and Y. L. Kwong. 2001. Methylation of p15 and p16 genes in acute promyelocytic leukemia: potential diagnostic and prognostic significance. J. Clin. Oncol. 19, 2033-2040   DOI
23 Bestor, T. H. and V. M. Ingram. 1983. Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. Natl. Acad. Sci. USA 80, 5559-5563   DOI
24 Costello, J. F., M. C. Fruhwald, D. J. Smiragilia, L. J. Rush, G. P. Robertson, X. Gao, F. A. Wright, J. D. Feramisoco, P. Peltomaki, J. C. Lang, D. E. Schuller, L. Yu, C. D. Bloomfield, M. A. Caligiuri, A. Yates, R. Nishikawa, H. Su Hwang, N. J. Petrelli, X. Zhang, M. S. O'Dorisio, W. A. Held, W. K. Cavenee and C. Plass. 2000. Aberrant CpG-island methylaiton has non-random and tumour-type-specific patterns. Nat. Genet. 25, 132-138   DOI   ScienceOn
25 Esteller, M. 2002. CpG island hypomethylation and tumor suppressor genes: a booming present, a bright future. Oncogene 21, 5427-5440   DOI   ScienceOn
26 Esteller, M. and J. G. Herman. 2002. Cancer as an epigenetic disease: DNA methylaiton and chromatin alterations in human tumours. J. Pathol. 196, 1-7   DOI   ScienceOn