Bacterial Surface Display of $GFP_{UV}$ on Bacillus subtilis Spores

  • Kim, Jung-Hyung (Department of Chemical Engineering, Dong-A University) ;
  • Roh, Chang-Hyun (Institute for Molecular Biology and Genetics, and School of Chemical Engineering, Seoul National University) ;
  • Lee, Chang-Won (Institute for Molecular Biology and Genetics, and School of Chemical Engineering, Seoul National University) ;
  • Kyung, Do-Hyun (Institute for Molecular Biology and Genetics, and School of Chemical Engineering, Seoul National University) ;
  • Choi, Soo-Keun (Genofocus Inc.) ;
  • Jung, Heung-Chae (Genofocus Inc.) ;
  • Pan, Jae-Gu (Genofocus Inc.) ;
  • Kim, Byung-Gee (Institute for Molecular Biology and Genetics, and School of Chemical Engineering, Seoul National University)
  • Published : 2007.04.30

Abstract

To analyze a cotG-based Bacillus subtilis spore display system directly, $GFP_{UV}$ was expressed on the surface of Bacillus subtilis spores. When $GFP_{UV}$ was fused to the C-terminal of the cotG structural gene and expressed, the existence of a $CotG-GFP_{UV}$ fusion protein on the B. subtilis spore was confirmed by flow cytometry confocal microscopic analysis. When the cotG anchoring motif was deleted, no fluorescence emission was observed under flow cytometry and confocal microscopic analysis from the purified spore, confirming the essential role of CotG as an anchoring motif. This $GFP_{UV}$ displaying spore might be used for another signaling application triggered by intracellular or extracellular stimuli.

Keywords

References

  1. Boder, E. T. and K. D. Wittrup. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15: 553-557 https://doi.org/10.1038/nbt0697-553
  2. Chapple, S. D. and I. M. Jones. 2002. Non-polar distribution of green fluorescent protein on the surface of Autographa californica nucleopolyhedrovirus using a heterologous membrane anchor. J. Biotechnol. 95: 269-275 https://doi.org/10.1016/S0168-1656(02)00023-8
  3. Choi, J. H., J. I. Choi, and S. Y. Lee. 2005. Display of proteins on the surface of Escherichia coli by C-terminal deletion fusion to the Salmonella typhimurium OmpC. J. Microbiol. Biotechnol. 15: 141-146
  4. Crameri, A., E. A. Whitehorn, E. Tate, and W. P. Stemmer. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffiing. Nat. Biotechnol. 14: 315-319 https://doi.org/10.1038/nbt0396-315
  5. Georgiou, G., C. Stathopoulos, P. S. Daugherty, A. R. Nayak, B. L. Iverson, and R. Curtiss 3rd. 1997. Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15: 29-34 https://doi.org/10.1038/nbt0197-29
  6. Goyal, A. and J. K. Batra. 2000. Inclusion of a furin-sensitive spacer enhances the cytotoxicity of ribotoxin restrictocin containing recombinant single-chain immunotoxins. Biochem. J. 345 Pt 2: 247-254 https://doi.org/10.1042/0264-6021:3450247
  7. Harwood, C. and S. Cutting. 1990. Molecular Biological Methods for Bacillu. John Wiley & Sons, Chichester
  8. Jung, H. C., J. M. Lebeault, and J. G. Pan. 1998. Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat. Biotechnol. 16: 576-580 https://doi.org/10.1038/nbt0698-576
  9. Kawamura, F. and R. H. Doi. 1984. Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J. Bacteriol. 160: 442-444
  10. Kim, H., M. Hahn, P. Grabowski, D. C. McPherson, M. M. Otte, R. Wang, C. C. Ferguson, P. Eichenberger, and A. Driks. 2006. The Bacillus subtilis spore coat protein interaction network. Mol. Microbiol. 59: 487-502 https://doi.org/10.1111/j.1365-2958.2005.04968.x
  11. Kim, J., S. Kim, C. O. Jeon, J. Yun, H. S. Lee, and H. S. Ro. 2006. Screening of yeast diauxic promoters for production of foreign proteins. J. Microbiol. Biotechnol. 16: 1459-1463
  12. Kim, J. H., C. S. Lee, and B. G. Kim. 2005. Spore-displayed streptavidin: A live diagnostic tool in biotechnology. Biochem. Biophys. Res. Commun. 331: 210-214 https://doi.org/10.1016/j.bbrc.2005.03.144
  13. Lee, Y., E. Ahn, S. Park, E. L. Masden, C. O. Jeon, and W. Park. 2006. Construction of a reporter strain Pseudomonas putida for the detection of oxidative stress caused by environmental pollutants. J. Microbiol. Biotechnol. 16: 386-390
  14. Li, L., D. G. Kang, and H. J. Chao 2004. Functional display of foreign protein on surface of Escherichia coli using, N-terminal domain of ice nucleation protein. Biotechnol. Bioeng. 85: 214-221 https://doi.org/10.1002/bit.10892
  15. Ojala, K., J. Koski, W. Ernst, R. Grabherr, I. Jones, and C. Oker-Blom. 2004. Improved display of synthetic IgG-binding domains on the baculovirus surface. Technol. Cancer Res. Treat. 3: 77-84 https://doi.org/10.1177/153303460400300109
  16. Richins, R. D., I. Kaneva, A. Mulchandani, and W. Chen. 1997. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat. Biotechnol. 15: 984-987 https://doi.org/10.1038/nbt1097-984
  17. Sacco, M., E. Ricca, R. Losick, and S. Cutting. 1995. An additional GerE-controlled gene encoding an abundant spore coat protein from Bacillus subtilis. J. Bacteriol. 177: 372-377 https://doi.org/10.1128/jb.177.2.372-377.1995
  18. Shi, H. and W. Wen Su. 2001. Display of green fluorescent protein on Escherichia coli cell surface. Enzyme Microb. Technol. 28: 25-34 https://doi.org/10.1016/S0141-0229(00)00281-7
  19. Shibasaki, S., A. Tanaka, and M. Ueda. 2003. Development of combinatorial bioengineering using yeast cell surface display -- order-made design of cell and protein for bio-monitoring. Biosens. Bioelectron. 19: 123-130 https://doi.org/10.1016/S0956-5663(03)00169-6
  20. Sousa, C., A. Cebolla, and V. de Lorenzo. 1996. Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat. Biotechnol. 14: 1017-1020 https://doi.org/10.1038/nbt0896-1017
  21. Ye, K., S. Shibasaki, M. Ueda, T. Murai, N. Kamasawa, M. Osumi, K. Shimizu, and A. Tanaka. 2000. Construction of an engineered yeast with glucose-inducible emission of green fluorescence from the cell surface. Appl. Microbiol. Biotechnol. 54: 90-96 https://doi.org/10.1007/s002539900307