References
- Adair, C., D. C. Kilsby, and P. T. Whittall. 1989. Comparison of the School field (non-linear Arrhenius) model and the square root model for predicting bacterial growth in foods. Food Microbiol. 6: 7-18 https://doi.org/10.1016/S0740-0020(89)80033-4
- Bhaduri, S., C. O. Turner-Jones, R. L. Buchanan, and J. G. Phillips. 1994. Response surface models of the effect of pH, sodium chloride and sodium nitrite on growth of Yersinia enterocolitica at low temperatures. Int. J. Food Microbiol. 23: 333-343 https://doi.org/10.1016/0168-1605(94)90161-9
- Baumler, A. J., B. M. Hargis, and R. M. Tsoils. 2000. Tracing the origins of Salmonella outbreaks. Science 287: 50-52 https://doi.org/10.1126/science.287.5450.50
- Bovill, R., J. Bew, N. Cook, M. D'Agostino, N. Wilkinson, and J. Baranyi. 2000. Predictions of growth for Listeria monocytogenes and Salmonella during fluctuating temperature. Int. J. Food Microbiol. 59: 157-165 https://doi.org/10.1016/S0168-1605(00)00292-0
- Buchanan, R. L. 1993. Predictive food microbiology. Trends Food Sci. Technol. 4: 6-11 https://doi.org/10.1016/S0924-2244(05)80004-4
- Buchanan, R. L., L. K. Bagi, R. V. Goins, and J. G. Phillips. 1993. Response surface model for the growth kinetics of Escherichia coli O157:H7. Food Microbiol. 10: 303-315 https://doi.org/10.1006/fmic.1993.1035
- Buchanan, R. L. and J. G. Phillips. 1990. Response surface models for predicting the effects of temperature, pH, sodium chloride content, sodium nitrite concentration and atmosphere on the growth of Listeria monocytogenes. J. Food Prot. 53: 370-376 https://doi.org/10.4315/0362-028X-53.5.370
- Cho, S.-A., I. S. Lee, J. H. Park, S. H. Seok, H. Y. Lee, D. J. Kim, M. W. Back, S. H. Lee, S. J. Hur, S. J. Ban, Y. K. Lee, and J. H. Park. 2005. Safety and immunogenicity of Salmonella enterica serovar Typhimurium IIaB in mice. J. Microbiol. Biotechnol. 15: 609-615
- Choi, J. H., J. I. Choi, and S. Y. Lee. 2005. Display of proteins on the surface of Escherichia coli by C-terminal deletion fusion to the Salmonella typhimurium Omp C. J. Microbiol. Biotechnol. 15: 141-146
- Dalgaard, P., T. Ross, L. Kamperman, K. Neumeyer, and T. A. McMeekin. 1994. Estimation of bacterial growth rates from turbidimetric and viable count data. Int. J. Food Microbiol. 23: 391-404 https://doi.org/10.1016/0168-1605(94)90165-1
- Dlgaard, P., O. Mejlholm, and H. H. Huss. 1997. Application of an iterative approach for development of a microbial model predicting the shelf-life of packed fish. Int. J. Food Microbiol. 38: 169-179 https://doi.org/10.1016/S0168-1605(97)00101-3
- D'Aoust, J. Y. 1997. Salmonella species, pp. 129-158. In M. P. Doyle, L. R. Beuchat, and T. J. Montville (eds.), Food Microbiology: Fundamentals and Frontiers. ASM Press, Washington, D.C
-
Duffy, L. L., P. B. Vanderlinde, and F. H. Grau. 1994. Growth of Listeria monocytogenes on vacuum-packed cooked meats: Effects of pH,
$a_{w}$ , nitrite and ascorbate. Int. J. Food Microbiol. 23: 377-390 https://doi.org/10.1016/0168-1605(94)90164-3 - El-Gazzar, F. E. and E. H. Marth. 1975. Salmonellae, salmonellosis, and dairy foods: A review. J. Dairy Sci. 75: 2327-2343
- Gibson, A. M., N. Bratchell, and T. A. Roberts. 1988. Predicting microbial growth: Growth responses of Salmonella in a laboratory medium as affected by pH, sodium chloride and storage temperature. Int. J. Food Microbiol. 6: 155-178 https://doi.org/10.1016/0168-1605(88)90051-7
- GraphPad Software Inc. 2003. User's Guide. San Diego, California, U.S.A
- Grau, F. H. and P. B. Vanderlinede. 1993. Aerobic growth of Listeria monocytogenes on beef lean and fatty tissue: Equations describing the effects of temperature and pH. J. Food Prot. 56: 96-101 https://doi.org/10.4315/0362-028X-56.2.96
- Grimont, P. A., D. F. Grimont, and P. Bouvet. 2000. Taxonomy of the genus Salmonella, pp. 1-17. In C. Wray and A. Wray (eds.), Salmonella in Domestic Animals. CAB Int., Wallingford, U.K
- Hedberg, C. W., M. J. David, K. E. White, K. L. MacDonald, and M. T. Osterholm. 1993. Role of egg consumption in sporadic Salmonella enteritidis and Salmonella typhimurium infections in Minnesota. J. Infect. Dis. 167: 107-111 https://doi.org/10.1093/infdis/167.1.107
- Jung, S. J., H. J. Kim, and H. Y. Kim. 2005. Quantitative detection of Salmonella typhimurium contamination in milk, using real-time PCR. J. Microbiol. Biotechnol. 15: 1353-1358
- Lee, M.-J., D. H. Bae, D. H. Lee, K. H. Jang, D. H. Oh, and S. D. Ha. 2006. Reduction of Bacillus cereus in cooked rice treated with sanitizers and disinfectants. J. Microbiol. Biotechnol. 16: 639-642
- McClure, P. J., C. D. Blackburn, M. B. Cole, P. S. Curtis, J. E. Jones, J. D. Legan, I. D. Ogden, M. W. Peck, T. A. Roberts, J. P. Sutherland, and S. J. Walker. 1994. Modelling the growth, survival and death of microorganisms in foods: The UK Food Micromodel approach. Int. J. Food Microbiol. 23: 265-275 https://doi.org/10.1016/0168-1605(94)90156-2
- Mead, P. S., L. Slutsker, V Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M Griffin, and R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5: 607-625 https://doi.org/10.3201/eid0505.990502
- Mishu, B., J. Koehler, L. A. Lee, D. Rodrigue, F. H. Berenner, P. Blake, and R. V. Tauxe. 1994. Outbreaks of Salmonella enteritidis infections in the United States, 1985-1991. J. Infect. Dis. 169: 547-552
- Nerbrink, E., E. Borch, H. Blom, and T. Nesbakken. 1999. A model based on absorbance data on the growth rate of Listeria monocytogenes and including the effects of pH, NaCl, Na-lactate and Na-acetate. Int. J. Food Microbiol. 47: 99-109 https://doi.org/10.1016/S0168-1605(99)00021-5
- Neumeyer, K., T. Ross, and T. A. McMeekin. 1997. Development of a predictive model to describe the effects of temperature and water activity on the growth of spoilage Pseudomonas. Int. J. Food Microbiol. 38: 45-54 https://doi.org/10.1016/S0168-1605(97)00089-5
- Oscar, T. P. 1999. Response surface models for effects of temperature and previous growth sodium chloride on growth kinetics of Salmonella typhimurium on cooked chicken breast. J. Food Prot. 62: 1470-1474 https://doi.org/10.4315/0362-028X-62.12.1470
- Oscar, T. P. 2002. Development and validation of a tertiary simulation model for predicting growth of Salmonella typhimurium on cooked chicken. Int. J. Food Microbiol. 76: 177-190 https://doi.org/10.1016/S0168-1605(02)00025-9
- Oscar, T. P. 2004. A quantitative risk assessment model for Salmonella and whole chicken. Int. J. Food Microbiol. 93: 231-247 https://doi.org/10.1016/j.ijfoodmicro.2003.12.002
- Palwnbo, S. A., A. C. Williams, R. L. Buchanan, and J. G. Phillips. 1991. Model for the aerobic growth of Aeromonas hydrophila K144. J. Food Prot. 54: 429-435 https://doi.org/10.4315/0362-028X-54.6.429
- Park, S. Y., J. W. Choi, J. H. Yeon, M. J. Lee, D. H. Chung, M. G. Kim, K. H. Lee, K. S. Kim, D. H. Lee, G. J. Bahk, D. H. Bae, K. Y. Kim, C. H. Kim, and S. D. Ha. 2005. Predictive modeling for the growth of Listeria monocytogenes as a function of temperature, NaCl, and pH. J. Microbiol. Biotechnol.15: 1323-1329
- Ross, T. 1996. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Bacteriol. 81: 501-508
- Ross, T. 1999. Meat and Livestock Australia, Sydney, Australia. Predictive Food Microbiology Models in the Meat Industry
- Ross, T., P. Dalgaard, and S. Tienungoon, 2000. Predictive modelling of the growth and survival of Listeria in fishery products. Int. J. Food Microbiol. 62: 231-245 https://doi.org/10.1016/S0168-1605(00)00340-8
- SAS Institute Inc. 2002. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, U.S.A
- Schaffuer, D. W. and T. P. Labuza. 1997. Predictive microbiology: Analyzing the present and the future. Food Technol. 51: 95-99
- Skinner, G. E., J. W. Larkin, and E. J. Rhodehamel. 1994. Mathematical modeling of microbial growth: A review. J. Food Safety 14: 175-217 https://doi.org/10.1111/j.1745-4565.1994.tb00594.x
- Soboleva, T. K., A. B. Pleasants, and G. le Roux. 2000. Predictive microbiology and food safety. Int. J. Food Microbiol. 57: 183-192 https://doi.org/10.1016/S0168-1605(00)00265-8
- Sutherland, J. P., A. J. Bayliss, and T. A. Roberts. 1994. Predictive modeling of growth of Staphylococcus aureus: The effects of temperature, pH, and sodium chloride. Int. J. Food Microbiol. 21: 217-236 https://doi.org/10.1016/0168-1605(94)90029-9
- Tietjen, M. and D. Y. C. Fung. 1995. Salmonellae and food safety. Crit. Rev. Microbiol. 21: 53-83 https://doi.org/10.3109/10408419509113534
- Whiting, R. C. and R. L. Buchanan. 1997. Predictive modeling, pp. 728-739. In M. P. Doyle, L. R. Beuchat, and T. J. Montville (eds.), Food Microbiology: Fundamentals and Frontiers. ASM Press, Washington, D.C
- Wilson, P. D. G., D. R. Wilson, T. F. Brocklehurst, H. P. Coleman, G. Mitchell, C. R. Waspe, S. A. Jukes, and M. M. Robins. 2003. Batch growth of Salmonella typhimurium LT2: Stoichiometry and factors leading to cessation of growth. Int. J. Food Microbiol. 89: 195-203 https://doi.org/10.1016/S0168-1605(03)00142-9
- Zurera-Cosano, G., A. M. Castillejo-Rodriguez, R. M. Garcia-Gimeno, and F. Rincon-Leon. 2004. Performance of response surface and Davey model for prediction of Staphylococcus aureus growth parameters under different experimental conditions. J. Food Prot. 67: 1138-1145 https://doi.org/10.4315/0362-028X-67.6.1138
- Ziprin, R. L., D. E. Corrier, A. Hinton Jr., R. C. Beier, G.. E. Spates, J. R. DeLoach, and M. H. Elissadle. 1990. Intracloacal Salmonella Typhimurium infection of broiler chickens: Reduction of colonization with anaerobic organisms and dietary lactose. Avian Dis. 34: 749-753 https://doi.org/10.2307/1591274