DOI QR코드

DOI QR Code

Selecting the Optimal Microalgal Species for Culturing the Brackish Water Copepod Paracyclopina nana

기수산 요각류 Paracyclopina nena의 배양을 위한 최적 미세조류의 선별

  • Min, Byeong-Hee (Department of Aquaculture, Pukyong National University) ;
  • Park, Heum-Gi (Faculty of Marine Bioscience & Technology, Kangnung National University) ;
  • Lee, Kyun-Woo (Faculty of Marine Bioscience & Technology, Kangnung National University) ;
  • Hur, Sung-Bum (Department of Aquaculture, Pukyong National University)
  • Published : 2007.02.28

Abstract

This study selected the optimal microalgal species for mass culture of a brackish water copepod Paracyclopina nana. Fifteen microalgal species were tested to examine nauplius production and the survival and maturation of brood females. Total and daily nauplius production were highest in P. nana fed Tetraselmis suecica followed Isochrysis galbana, Dunaliella tertiolecta, and Phaeodactylum tricornutum. With a monospecific microalgal diet, the total density was highest with P. nana fed I. galbana, at 63.3 inds./mL. With a mixed microalgal diet, the total density of P. nana fed T. suecica+I. galbana was higher than that fed other mixed diets, although there was no difference between a monospecific diet of I. galbana and a mixed diet of T. suecica+I. galbana. Examining the fatty acid composition of P. nana, the eicosapentaenoic acid (EPA) was highest in P. nana fed T. suecica at 5.4% while the docosahexaenoic acid (DHA) content was highest I. galbana diet at 31.9%. Although no DHA was detected in T. suecica, P. nana fed this microalgal species had a high DHA composition of 24.3%. We suggest that the optimal microalgal species for the mass culture of P. nana is T. suecica which is easy to culture on masse and has a high linolenic acid content.

Keywords

References

  1. Budge, S.M. 1999. Fatty acid biomarkers in a cold water marine environment. Ph.D. Thesis, Memorial University of Newfoundland, St. John's, Newfoundland, Canada, 1-197
  2. Chung, J.H. 2001. Culture of copepods for use as a live food of marine fish larvae. MS Thesis, Kangnung National University, Gangneung, 1-58
  3. Dam, H.G. 1986. Short-term feeding of Termora longicornis Muller in the laboratory and field. J. Exp. Mar. BioI. Ecol., 99, 149-161 https://doi.org/10.1016/0022-0981(86)90234-0
  4. Duncan, D.B. 1955. Multiple-range and multiple F tests. Biometrics, 11, 1-42 https://doi.org/10.2307/3001478
  5. Gapasin, R.S.J. and M.N. Duray. 2001. Effects of DHA-enriched live food on growth, survival and incidence of opercular deformities in milkfish (Chanos chanos). Aquaculture, 193, 49-63 https://doi.org/10.1016/S0044-8486(00)00469-5
  6. Guillard, R.R.L. and J.H. Ryther. 1962. Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Clece) Gran. Can. J. Microbiol., 3, 229-239
  7. Hernandez Molejon, O.G. and L. Alvarez-Lajonchere. 2003. Culture experiments Oithona oculata Farran (Copepoda: Cyclopoida), and its advantages as food for marine fish larvae. Aquaculture, 219, 471-483 https://doi.org/10.1016/S0044-8486(02)00644-0
  8. Kimoto, K., S. Uye and T. Onbe. 1986a. Growth characteristics of a brackish-water calanoid copepod Sinocalanus teneZlus in relation to temperature and salinity. Bull. Plankton Soc. Jap., 33, 43-57
  9. Kimoto, K., S. Uye and T. Onbe. 1986b. Egg production of a brackish-water calanoid copepod Sinocalanus teneZlus in relation to food abundance and temperature. Bull. Plankton Soc. Jap., 33, 133-145
  10. Klein Breteler, W.C.M., N. Schogt, M. Bass, S. Schouten and G.W. Kraay. 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar. Biol., 135, 191-198 https://doi.org/10.1007/s002270050616
  11. Knuckey, R.M., G.L. Semmens, R.J. Mayer and M.A. Rimmer. 2005. Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: Effect of algal species and feed concentration on copepod development. Aquaculture, 249, 339-351 https://doi.org/10.1016/j.aquaculture.2005.02.053
  12. Koski, M., M. Rosenberg, M. Viitasalo, S. Tanskanen and U. Sjolund, 1999. Is Prymnesium patelliferum toxic for copepods? - Grazing, egg production, and egestion of the calanoid copepod Eurytemora affinis in mixtures of good and bad food. ICES J. Mar. Sci., 56 (Suppl.), 131-139
  13. Kuroshima, R., M. Sato, R. Yoshinaka and S. Ikeda. 1987. Nutritional quality of the wild zooplankton as a living feed for fish larvae. Suisanzoshoku, 35, 113-117
  14. Lacoste, A., S.P. Poulet, A. Cueff, G.K. Kattner, A. Ianora and M. Laabir. 2001. New evidence of the copepod maternal food effect on reproduction. J. Exp. Mar. BioI. Ecol., 259, 85-107 https://doi.org/10.1016/S0022-0981(01)00224-6
  15. Lee, K.W. 2004. Mass culture and food value of the cyclopoid copepod Paracyclopina nan a Smirnov. Ph.D. Thesis, Kangnung National University, Korea, 1-124
  16. Lee, K.W., H.G. Park, S.M. Lee and H.K. Kang. 2006. Effects of diets on the growth of the brackish water cyclopoid copepod Paracyclopina nana Smirnov. Aquaculture, 256, 346-353 https://doi.org/10.1016/j.aquaculture.2006.01.015
  17. Lourenco, S.O., D.M.L. Marquez, J. Mancini-Filho, E. Barbarino and E. Aidar. 1997. Changes in biochemical profile of Tetraselmis gracilis I. Comparison of two culture media. Aquaculture, 148, 153-168 https://doi.org/10.1016/S0044-8486(96)01416-0
  18. McLaren I. A. and C. J. Corkett. 1981. Temperaturedependent growth and production by a marine copepod. Can. J. Fish. Aquat. Sci., 38, 77-83 https://doi.org/10.1139/f81-010
  19. Morrison, W.R. and L.M. Smith. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol. J. Lipid Res., 5, 600-608
  20. Nagaraj, M. 1992. Combined effects of temperature and salinity on the development of the copepod Eurytemora affinis. Aquaculture, 103, 65-71 https://doi.org/10.1016/0044-8486(92)90279-T
  21. Norsker, N.H. and J.G. Stottrup. 1994. The importance of dietary HUFAs for fecundity and HUFA content in the harpacticoid, Tisbe holothuriae Humes. Aquaculture, 125, 155-166 https://doi.org/10.1016/0044-8486(94)90292-5
  22. Park, H.G., S.B. Hur and C.W. Kim. 1998. Culturing method and dietary value of benthic copepod, Tigriopus japonicus. J. Aquacult., 11, 261-269
  23. Payne, M.F. and R.J. Rippingale. 2000. Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. Aquaculture, 187, 85-96 https://doi.org/10.1016/S0044-8486(99)00391-9
  24. Renaud, S.M., L.V. Thinh and D.L. Parry. 1999. The gross chemical composition and fatty acid composition of 18 species of tropical Australian micro algae for possible use in maricu1ture. Aquaculture, 170, 147-159 https://doi.org/10.1016/S0044-8486(98)00399-8
  25. Riccardi, N. and L. Mariotto. 2000. Seasonal variations in copepod body length: a comparison between different species in the lagoon of Venice. Aquat. Ecol., 34, 243-252 https://doi.org/10.1023/A:1009971507797
  26. Rico-Martinez, R. and S.I. Dodson. 1992. Culture of the rotifer, Brachionus calyciflorus Pallas. Aquaculture, 105, 191-199 https://doi.org/10.1016/0044-8486(92)90130-D
  27. Sun, B. and J.W. Fleeger. 1995. Sustained mass culture of Amphiascoides atopus a marine harpacticoid copepod in a recirculating system. Aquaculture, 136, 313-321 https://doi.org/10.1016/0044-8486(95)01064-5
  28. Stottrup, J.G. and J. Jensen. 1990. Influence of algal diet on feeding and egg-production of the calanoid copepod Acartia tonsa Dana. J. Exp. Mar. Biol. Ecol., 141, 87-105 https://doi.org/10.1016/0022-0981(90)90216-Y
  29. Stottrup, J.G. and N.H. Norsker. 1997. Production and use of copepods in marine fish larviculture. Aquaculture, 155, 231-247 https://doi.org/10.1016/S0044-8486(97)00120-8
  30. Tirelli, V. and P. Mayzaud. 1998. Gut pigment destruction by the copepod Acartia clausi. J. Plankton Res., 20, 1953-1961 https://doi.org/10.1093/plankt/20.10.1953
  31. Toledo, J.D., M.S. Golez, M. Doi and A. Ohno. 1999. Use of copepod nauplii during early feeding stage of grouper Epinephelus coioides. Fish. Sci., 65, 390-397 https://doi.org/10.2331/fishsci.65.390
  32. Watanabe, T., C. Kitajima and S. Fujita. 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture, 34, 115-143 https://doi.org/10.1016/0044-8486(83)90296-X