Browse > Article
http://dx.doi.org/10.5657/kfas.2007.40.1.008

Selecting the Optimal Microalgal Species for Culturing the Brackish Water Copepod Paracyclopina nana  

Min, Byeong-Hee (Department of Aquaculture, Pukyong National University)
Park, Heum-Gi (Faculty of Marine Bioscience & Technology, Kangnung National University)
Lee, Kyun-Woo (Faculty of Marine Bioscience & Technology, Kangnung National University)
Hur, Sung-Bum (Department of Aquaculture, Pukyong National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.40, no.1, 2007 , pp. 8-15 More about this Journal
Abstract
This study selected the optimal microalgal species for mass culture of a brackish water copepod Paracyclopina nana. Fifteen microalgal species were tested to examine nauplius production and the survival and maturation of brood females. Total and daily nauplius production were highest in P. nana fed Tetraselmis suecica followed Isochrysis galbana, Dunaliella tertiolecta, and Phaeodactylum tricornutum. With a monospecific microalgal diet, the total density was highest with P. nana fed I. galbana, at 63.3 inds./mL. With a mixed microalgal diet, the total density of P. nana fed T. suecica+I. galbana was higher than that fed other mixed diets, although there was no difference between a monospecific diet of I. galbana and a mixed diet of T. suecica+I. galbana. Examining the fatty acid composition of P. nana, the eicosapentaenoic acid (EPA) was highest in P. nana fed T. suecica at 5.4% while the docosahexaenoic acid (DHA) content was highest I. galbana diet at 31.9%. Although no DHA was detected in T. suecica, P. nana fed this microalgal species had a high DHA composition of 24.3%. We suggest that the optimal microalgal species for the mass culture of P. nana is T. suecica which is easy to culture on masse and has a high linolenic acid content.
Keywords
Copepod culture; Fatty acid; Microalgal food; Paracyclopina nana; Tetraselmis suecica;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hernandez Molejon, O.G. and L. Alvarez-Lajonchere. 2003. Culture experiments Oithona oculata Farran (Copepoda: Cyclopoida), and its advantages as food for marine fish larvae. Aquaculture, 219, 471-483   DOI   ScienceOn
2 Kimoto, K., S. Uye and T. Onbe. 1986b. Egg production of a brackish-water calanoid copepod Sinocalanus teneZlus in relation to food abundance and temperature. Bull. Plankton Soc. Jap., 33, 133-145
3 Knuckey, R.M., G.L. Semmens, R.J. Mayer and M.A. Rimmer. 2005. Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: Effect of algal species and feed concentration on copepod development. Aquaculture, 249, 339-351   DOI   ScienceOn
4 Kuroshima, R., M. Sato, R. Yoshinaka and S. Ikeda. 1987. Nutritional quality of the wild zooplankton as a living feed for fish larvae. Suisanzoshoku, 35, 113-117
5 McLaren I. A. and C. J. Corkett. 1981. Temperaturedependent growth and production by a marine copepod. Can. J. Fish. Aquat. Sci., 38, 77-83   DOI
6 Park, H.G., S.B. Hur and C.W. Kim. 1998. Culturing method and dietary value of benthic copepod, Tigriopus japonicus. J. Aquacult., 11, 261-269
7 Riccardi, N. and L. Mariotto. 2000. Seasonal variations in copepod body length: a comparison between different species in the lagoon of Venice. Aquat. Ecol., 34, 243-252   DOI   ScienceOn
8 Sun, B. and J.W. Fleeger. 1995. Sustained mass culture of Amphiascoides atopus a marine harpacticoid copepod in a recirculating system. Aquaculture, 136, 313-321   DOI   ScienceOn
9 Toledo, J.D., M.S. Golez, M. Doi and A. Ohno. 1999. Use of copepod nauplii during early feeding stage of grouper Epinephelus coioides. Fish. Sci., 65, 390-397   DOI
10 Watanabe, T., C. Kitajima and S. Fujita. 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture, 34, 115-143   DOI   ScienceOn
11 Guillard, R.R.L. and J.H. Ryther. 1962. Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Clece) Gran. Can. J. Microbiol., 3, 229-239
12 Lee, K.W., H.G. Park, S.M. Lee and H.K. Kang. 2006. Effects of diets on the growth of the brackish water cyclopoid copepod Paracyclopina nana Smirnov. Aquaculture, 256, 346-353   DOI   ScienceOn
13 Stottrup, J.G. and J. Jensen. 1990. Influence of algal diet on feeding and egg-production of the calanoid copepod Acartia tonsa Dana. J. Exp. Mar. Biol. Ecol., 141, 87-105   DOI   ScienceOn
14 Stottrup, J.G. and N.H. Norsker. 1997. Production and use of copepods in marine fish larviculture. Aquaculture, 155, 231-247   DOI   ScienceOn
15 Dam, H.G. 1986. Short-term feeding of Termora longicornis Muller in the laboratory and field. J. Exp. Mar. BioI. Ecol., 99, 149-161   DOI   ScienceOn
16 Klein Breteler, W.C.M., N. Schogt, M. Bass, S. Schouten and G.W. Kraay. 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar. Biol., 135, 191-198   DOI
17 Chung, J.H. 2001. Culture of copepods for use as a live food of marine fish larvae. MS Thesis, Kangnung National University, Gangneung, 1-58
18 Duncan, D.B. 1955. Multiple-range and multiple F tests. Biometrics, 11, 1-42   DOI   ScienceOn
19 Nagaraj, M. 1992. Combined effects of temperature and salinity on the development of the copepod Eurytemora affinis. Aquaculture, 103, 65-71   DOI   ScienceOn
20 Budge, S.M. 1999. Fatty acid biomarkers in a cold water marine environment. Ph.D. Thesis, Memorial University of Newfoundland, St. John's, Newfoundland, Canada, 1-197
21 Lacoste, A., S.P. Poulet, A. Cueff, G.K. Kattner, A. Ianora and M. Laabir. 2001. New evidence of the copepod maternal food effect on reproduction. J. Exp. Mar. BioI. Ecol., 259, 85-107   DOI   ScienceOn
22 Renaud, S.M., L.V. Thinh and D.L. Parry. 1999. The gross chemical composition and fatty acid composition of 18 species of tropical Australian micro algae for possible use in maricu1ture. Aquaculture, 170, 147-159   DOI   ScienceOn
23 Rico-Martinez, R. and S.I. Dodson. 1992. Culture of the rotifer, Brachionus calyciflorus Pallas. Aquaculture, 105, 191-199   DOI   ScienceOn
24 Tirelli, V. and P. Mayzaud. 1998. Gut pigment destruction by the copepod Acartia clausi. J. Plankton Res., 20, 1953-1961   DOI   ScienceOn
25 Kimoto, K., S. Uye and T. Onbe. 1986a. Growth characteristics of a brackish-water calanoid copepod Sinocalanus teneZlus in relation to temperature and salinity. Bull. Plankton Soc. Jap., 33, 43-57
26 Gapasin, R.S.J. and M.N. Duray. 2001. Effects of DHA-enriched live food on growth, survival and incidence of opercular deformities in milkfish (Chanos chanos). Aquaculture, 193, 49-63   DOI   ScienceOn
27 Morrison, W.R. and L.M. Smith. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol. J. Lipid Res., 5, 600-608
28 Koski, M., M. Rosenberg, M. Viitasalo, S. Tanskanen and U. Sjolund, 1999. Is Prymnesium patelliferum toxic for copepods? - Grazing, egg production, and egestion of the calanoid copepod Eurytemora affinis in mixtures of good and bad food. ICES J. Mar. Sci., 56 (Suppl.), 131-139
29 Lee, K.W. 2004. Mass culture and food value of the cyclopoid copepod Paracyclopina nan a Smirnov. Ph.D. Thesis, Kangnung National University, Korea, 1-124
30 Lourenco, S.O., D.M.L. Marquez, J. Mancini-Filho, E. Barbarino and E. Aidar. 1997. Changes in biochemical profile of Tetraselmis gracilis I. Comparison of two culture media. Aquaculture, 148, 153-168   DOI   ScienceOn
31 Payne, M.F. and R.J. Rippingale. 2000. Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. Aquaculture, 187, 85-96   DOI   ScienceOn
32 Norsker, N.H. and J.G. Stottrup. 1994. The importance of dietary HUFAs for fecundity and HUFA content in the harpacticoid, Tisbe holothuriae Humes. Aquaculture, 125, 155-166   DOI   ScienceOn