DOI QR코드

DOI QR Code

Design, fabrication and characterization of a flap valve mircopump using an ionic polymer-metal composite actuator

이온성 폴리머-금속 복합재료 작동층을 사용한 플랩 밸브 마이크로 펌프의 설계, 개발 및 특성 규명

  • 구엔탄텅 (건국대학교 항공우주공학과 대학원) ;
  • 구옌빈칸 (건국대학교 신소재공학과) ;
  • 유영태 (건국대학교 신소재공학과) ;
  • 구남서 (건국대학교 신기술융합학과 지능형 마이크로시스템 전공)
  • Published : 2007.04.30

Abstract

In this paper, a flap valve micropump with an ionic polymer-metal composite (IPMC) actuator was designed, fabricated, and experimentally characterized. A multilayered IPMC based on Nafion/layered silicate and Nafion/silica nanocomposites was fabricated for the actuation section of the micropump. The IPMC diaphragm, a key element of the mircopump, was designed so that the IPMC actuator was supported by a flexible polydimethylsiloxane (PDMS) structure at its perimeter. This design feature enabled a significantly high displacement of the IPMC diaphragm. The overall size of the micropump is $20{\times}20{\times}5$ ${mm}^3$. Water flow rates of up to 760 ${\mu}l$/min and a maximum backpressure of 1.5 kPa were recorded. A significant advantage of the proposed micropump is its low driven voltage from only 1-3 V. In addition, a simple and effective design, and an ease of manufacturing are other advantages of the present micropump.

본 연구에서는 이온성 폴리머-금속 복합재료 (IPMC) 작동기를 사용한 플랩 밸브 마이크로 펌프의 설계, 제작 및 실험적 특성 규명을 수행하였다. 나피온/실리케이트 층과 나피온/실리카 나노복합재료를 기반으로 한 다층형 IPMC를 마이크로 펌프의 작동층으로 사용하였다. 마이크로 펌프의 핵심 요소인 IPMC 다이아프램의 주위를 유연한 폴리디메틸실옥산(PDMS)을 사용하여 지지하도록 함으로써 상당히 큰 작동 변위를 내도록 설계하였다. 이렇게 개발된 마이크로 펌프의 크기는 $20{\times}20{\times}5$ ${mm}^3$ 이고, 최대 유량은 760 l/min, 최대 배압은 1.5 kPa이었다. 본 연구에서 개발한 마이크로 펌프는 간단하고 효율적인 설계를 수행하여 제작이 용이할 뿐 아니라, 동작 전압이 1-3V라는 장점이 있다.

Keywords

References

  1. P. Woias, 'Micropumps-past, progress and future prospects', Sensors and Actuators B, Vol. 105, 2005, pp. 28-38 https://doi.org/10.1016/S0925-4005(04)00108-X
  2. N. T. Nguyen, X. Huang, T. K. Chuan, 'MEMS-Micropumps: A Review', ASME, Vol. 124, 2002, pp. 384-392
  3. A. Olsson, G. Stemme, E. Stemme, 'Diffuser-element design investigation for valve-less pumps', Sensor and Actuators A, Vol. 57, 1996, pp. 137-143 https://doi.org/10.1016/S0924-4247(97)80104-5
  4. N. T. Nguyen, T. Q Truong, 'A fully polymeric micropump with piezoelectric actuator', Sensors and Actuators B, Vol. 97, 2004, pp. 137-143 https://doi.org/10.1016/S0925-4005(03)00521-5
  5. T. T. Nguyen, N. S. Goo, 'A novel PDMS valveless micropump with a circular lightweight piezo-composite actuator', Key Engineering Materials, Vols, 321-323, 2006, pp. 245-248, 14-18
  6. S. Boehm, W. Olthuis, P. Bergveld, 'A plastic micropump constructed with conventional techniques and materials', Sensors and Actuator A, Vol. 77, 1999, pp. 223-228 https://doi.org/10.1016/S0924-4247(99)00192-2
  7. O. C. Jeong, S. S Yang, 'Fabrication and test of a thermopneumatic miropump with a corrugated P+ diagram', Sensors and Actuators A, Vol. 83, 2000, pp. 249-255 https://doi.org/10.1016/S0924-4247(99)00392-1
  8. R. Zengerle, S. Kluge, M. Richter, A. Richter, 'A bi-directional silicon micropump', IEEE 8th Int. Workshop on MEMS (Amsterdam, Netherlands), 1995, pp. 19-24
  9. M. Shahinpoor and K. J. Kim, 'Ionic polymer-metal composites: I. Fundamentals', Smart Materials and Structures, Vol. 10, 2001, pp. 819-833 https://doi.org/10.1088/0964-1726/10/4/327
  10. M. Shahinpoor and K. J. Kim, 'Ionic polymer-metal composites: VI. Industrial and medical applications', Smart Materials and Structures, Vol. 14, 2005, pp. 197-214 https://doi.org/10.1088/0964-1726/14/1/020
  11. V. K. Nguyen, J. W. Lee, Y. T. Yoo, 'Characteristics and Performance of Ionic Polymer-Metal Composite Actuators Based on Nafiori/Layered Silicate and Nafiou/Silica Nanocomposites', Sensors and Actuators B, 2006, in press
  12. J. H. Lee and J. D. Nam, 'Water Uptake and Migration Effects of Electroactive Ion-Exchange Polymer Metal Composite (IPMC) Actuator', Sensors and Actuators A, Vol. 118, 2005, pp. 98-106 https://doi.org/10.1016/j.sna.2004.07.001
  13. S. Guo, K. Asaka, 'Polymer-based New Type of Micropump for Bio-medical Application', Proceedings of the 2003 IEEE International Conference on Robotic & Automation (Taipei, Taiwan), 2003, pp. 1830-1835
  14. J. J. Pak, J. Kim, S. W. Oh, J. H. Son, S. H. Cho, S. K. Lee, J. Y. Park and B. Kim, 'Fabrication of ionic polymer-metal composite (IPMC) micropump using a commercial Nafion', Proceeding of 2004 SPIE, Vol. 5385, pp. 272-280
  15. S. Lee and K. J. Kim, 'Design of IPMC Actuator-driven Valve-less Micropump and Its Flow Rate Estimation at Low Reynolds Numbers', Smart Materials and Structures (in press)
  16. J. C. Lotters, W. Olthuis, P. H. Veltink and P. Bergveld, 'The mechanical properties of rubber elastic polymer poly dimethylsiloxane for sensor application', J. Micromech. Microeng., Vol. 7, 1997, pp. 145-147 https://doi.org/10.1088/0960-1317/7/3/017
  17. V. K. Nguyen, Y. T. Yoo, 'Preparation and Performance of Multilayered Ionic Polymer-Metal Composite Actuators Based on Nafiori/Layered Silicate and Nafion/Silica Nanocomposites', Sensors and Actuators B, 2006, in press
  18. K. Junwu, Y. Zhigan, P. Taijiang, C Guangming, W. Boda, 'Design and test of a high-performance piezoelectric micropump for drug delivery', Sensors and Actuators A, Vol. 121, 2005, pp. 156-161 https://doi.org/10.1016/j.sna.2004.12.002