A Study on Improvement of a-Si:H TFT Operating Speed

  • Hur, Chang-Wu (Mokwon University, Department of Information Electronics & Imaging Engineering)
  • Published : 2007.03.30

Abstract

The a-Si:H TFTs decreasing parasitic capacitance of source-drain is fabricated on glass. The structure of a-Si:H TFTs is inverted staggered. The gate electrode is formed by patterning with length of $8{\mu}m{\sim}16{\mu}m$ and width of $80{\sim}200{\mu}m$ after depositing with gate electrode (Cr) $1500{\AA}$ under coming 7059 glass substrate. We have fabricated a-SiN:H, conductor, etch-stopper and photoresistor on gate electrode in sequence, respectively. The thickness of these, thin films is formed with a-SiN:H ($2000{\mu}m$), a-Si:H($2000{\mu}m$) and $n^+a-Si:H$ ($500{\mu}m$). We have deposited $n^+a-Si:H$, NPR(Negative Photo Resister) layer after forming pattern of Cr gate electrode by etch-stopper pattern. The NPR layer by inverting pattern of upper gate electrode is patterned and the $n^+a-Si:H$ layer is etched by the NPR pattern. The NPR layer is removed. After Cr layer is deposited and patterned, the source-drain electrode is formed. The a-Si:H TFTs decreasing parasitic capacitance of source-drain show drain current of $8{\mu}A$ at 20 gate voltages, $I_{on}/I_{off}$ ratio of ${\sim}10^8$ and $V_{th}$ of 4 volts.

Keywords

References

  1. Michael Hack, 'Physical models for amorphous-silicon TFT and their implementation in a circuit simulation program', IEEE ED., pp.2764-2769, Dec, 1989
  2. K. Aflatooni, a-Si:H Schottky diode direct detection pixel for large area x-ray imaging, IEEE IEDM, Deeember 7-10, Washington, D.C., 1997
  3. Chang W. Hur, ' Method of Making Thin Film Transistors', United States Patent, Patent No.5,306,653, Apr. 1994
  4. R.V.R. Murthy, Mechanisms underlying leakage current in inverted staggered a-Si:H thin film transistors, Fourth Symp. on Thin Film Transistor Technologies, Boston, Nov. 1-6, 1998
  5. A. Nathan, Correlation between leakage current and overlap capacitance in a-Si:H TFTs, IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensor, Karuizawa, Japan, June 10-12, 1999