Antimicrobial Effects of Flavone Analogues and Their Structure-Activity Relationships

  • Young, Jung-Mo (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, IBST, Konkuk University) ;
  • Park, Young-Hee (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, IBST, Konkuk University) ;
  • Lee, Yong-Uk (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, IBST, Konkuk University) ;
  • Kim, Ho-Jung (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, IBST, Konkuk University) ;
  • Shim, Yhong-Hee (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, IBST, Konkuk University) ;
  • Ahn, Joong-Hoon (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, IBST, Konkuk University) ;
  • Lim, Yoong-Ho (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, IBST, Konkuk University)
  • Published : 2007.03.31

Abstract

It has been well known that the use of Saccharomyces cerevisiae can cause fungemia in critically ill patients and flavone shows an antimicrobial effect on S. cerevisiae. Therefore, we have investigated the activities of thirteen flavone analogues on S. cerevisiae in our studies. Because flavonoids including flavones have antioxidative effects, we try to carry out the activity studies of flavone analogues in vitro and in vivo. In addition, the relationships between the structures of flavone analogues and their biological activities, such as antimicrobial and antioxidative effects, were elucidated using Comparative Molecular Field Analysis calculations. Of the flavone analogues tested here, 3,2'-dihydroxyflavone showed both good antimicrobial and antioxidative activities.

Keywords

References

  1. Ahn, H. S., T. I. Jeon, J. Y. Lee, S. G. Hwang, Y. Lim, and D. K. Park. 2002. Antioxidant activity of persimmon and grape seed extract: In vitro and in vivo. Nutr. Res. 22: 1265- 1273 https://doi.org/10.1016/S0271-5317(02)00429-3
  2. Cherifi, S., J. Robberecht, and Y. Miendje. 2004. Saccharomyces cerevisiae fungemia in an elderly patient with Clostridium difficile colitis. Acta Clin. Belg. 59: 223- 224 https://doi.org/10.1179/acb.2004.033
  3. Hirschman, J. E., R. Balakrishnan, K. R. Christie, M. C. Costanzo, S. S. Dwight, S. R. Engel, D. G. Fisk, E. L. Hong, M. S. Livstone, R. Nash, J. Park, R. Oughtred, M. Skrzypek, B. Starr, C. L. Theesfeld, J. Williams, R. Andrada, G. Binkley, Q. Dong, C. Lane, S. Miyasato, A. Sethuraman, M. Schroeder, M. K. Thanawala, S. Weng, K. Dolinski, D. Botstein, and J. M. Cherry. 2006. Genome Snapshot: A new resource at the Saccharomyces Genome Database (SGD) presenting an overview of the Saccharomyces cerevisiae genome. Nucleic Acids Res. 34: D442-D445 https://doi.org/10.1093/nar/gkj117
  4. Kim, H.-E., R. Qin, and K.-S. Chae. 2005. Increased production of exoinulinase in Saccharomyces cerevisiae by expressing the Kluyveromyces marxianus INU1 gene under the control of the INU1 promoter. J. Microbiol. Biotechnol. 15: 447-450
  5. Kim, I.-S., H. S. Yun, H. Shimisu, E. Kitagawa, H. Iwahashi, and I. Jin. 2005. Elucidation of copper and asparagine transport systems in Saccharomyces cerevisiae KNU5377 through genome-wide transcriptional analysis. J. Microbiol. Biotechnol. 15: 1240-1249
  6. Kim, J.-H., D.-H. Lee, S.-C. Jeong, K.-S. Chung, and J.-S. Lee. 2004. Characterization of antihypertensive angiotensin Iconverting enzyme inhibitor from Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 14: 1318-1323
  7. Moon, B.-H., Y. Lee, J.-H. Ahn, and Y. Lim. 2006. Complete assignment of 1H and 13C NMR data of dihydroxyflavone derivatives. Magn. Reson. Chem. 44: 99-101 https://doi.org/10.1002/mrc.1725
  8. Munoz, P., E. Bouza, M. Cuenca-Estrella, J. M. Eiros, M. J. Perez, M. Sanchez-Somolinos, C. Rincon, J. Hortal, and T. Pelaez. 2005. Saccharomyces cerevisiae fungemia: An emerging infectious disease. Clin. Infect. Dis. 40: 1625- 1634 https://doi.org/10.1086/429916
  9. Paik, S.-K., H.-S. Yun, H. Iwahashi, K. Obuchi, and I. Jin. 2005. Effect of trehalose on stabilization of cellular components and critical targets against heat shock in Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 15: 965- 970
  10. Park, H. and A. T. Bakalinsky. 2004. Evidence for sulfite proton symport in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 14: 967-971
  11. Park, Y.-S., C.-W. Yun, J. Y. Kong, T.-H. Kim, and H.-C. Sung. 2004. High copy rme1p suppresses iron-induced cell growth defect of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 14: 470-473
  12. Park, Y., Y.-U. Lee, H. Kim, Y. Lee, Y.-A. Yoon, B. Moon, Y. Chong, J.-H. Ahn, Y.-H. Shim, and Y. Lim. 2006. NMR data of flavone derivatives and their anti-oxidative activities. Bull. Korean Chem. Soc. 27: 1537-1541 https://doi.org/10.5012/bkcs.2006.27.10.1537
  13. Rauha, J. P., S. Remes, M. Heinonen, A. Hopia, M. Kahkonen, T. Kujala, K. Pihlaja, H. Vuorela, and P. Vuorela. 2000. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 56: 3-12 https://doi.org/10.1016/S0168-1605(00)00218-X
  14. Ro, H.-S., M.-S. Lee, M.-S. Hahm, H.-S. Bae, and B. H. Chung. 2005. Production of active carboxypeptidase Y of Saccharomyces cerevisiae secreted from methylotrophic yeast Pichia pastoris. J. Microbiol. Biotechnol. 15: 202- 205
  15. Yoon, Y.-A., H. Kim, Y. Lim, and Y.-H. Shim. 2006. Relationships between larval growth inhibition of Caenorhabditis elegans by apigenin derivatives and their structures. Arch. Pharm. Res. 29: 582-586 https://doi.org/10.1007/BF02969269
  16. Yun, H., S. Paik, I. Kim, I. Jin, and H. Sohn. 2004. Direct evidence of intracellular alkalinization in Saccharomyces cerevisiae KNU5377 exposed to inorganic sulfuric acid. J. Microbiol. Biotechnol. 14: 243-249
  17. Zattoni, A., D. Melucci, P. Reschiglian, R. Sanz, L. Puignou, and M. T. Galceran. 2004. Characterization of winemaking yeast by cell number-size distribution analysis through flow field-flow fractionation with multi-wavelength turbidimetric detection. J. Chromatogr. A 29: 293-301 https://doi.org/10.1016/S0021-9673(00)92667-0