Physiological Responses of Bacillus amyloliquefaciens Spores to High Pressure

  • Ahn, Ju-Hee (Division of Biomaterials Engineering, Kangwon National University) ;
  • Balasubramaniam, V.M. (Department of Food Science and Technology, The Ohio State University)
  • Published : 2007.03.31

Abstract

Pressure inactivation behavior of Bacillus amyloliquefaciens spores was investigated in deionized water. The spores of B. amyloliquefaciens were subjected to $105^{\circ}C$ and 700 MPa. The magnitude of the decrease in viability after pressure treatment was similar to that after pressure treatment followed by heat shock. The increase of dipicolinic acid (DPA) release was correlated with the spore inactivation, and the hydrophobicity did not significantly change during the pressure-assisted thermal processing (PATP). Lag phase duration increased with increasing pressure process time. The mechanisms of spore germination and inactivation during the PATP were related to a complex physiological process.

Keywords

References

  1. Ahn, J. and V. M. Balasubramaniam. 2007. Effects of inoculum level and pressure pulse on the inactivation of Clostridium sporogenes spores by pressure-assisted thermal processing. J. Microbiol. Biotechnol. (In Press.)
  2. Ananta, E., V. Heinz, O. Schluter, and D. Knorr. 2001. Kinetic studies on high-pressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. Innov. Food Sci. Emerg. Tech. 2: 261-272 https://doi.org/10.1016/S1466-8564(01)00046-7
  3. Balasubramaniam, V. M., E. Y. Ting, C. M. Stewart, and J. A. Robbins. 2004. Recommendation laboratory practices for conducting high-pressure microbial inactivation experiments. Innov. Food Sci. Emerg. Tech. 5: 299-306 https://doi.org/10.1016/j.ifset.2004.04.001
  4. Bull, M. K., M. M. Hayman, C. M. Stewart, E. A. Szabo, and S. J. Knabel. 2005. Effect of prior growth temperature, type of enrichment medium, and temperature and time of storage on recovery of Listeria monocytogenes following high pressure processing of milk. Int. J. Food Microbiol. 101: 53-61 https://doi.org/10.1016/j.ijfoodmicro.2004.10.045
  5. Cerf, O. 1977. Tailing of survival curves of bacterial spores. J. Appl. Bacteriol. 42: 1-9 https://doi.org/10.1111/j.1365-2672.1977.tb00665.x
  6. Earnshaw, R. G., J. Appleyard, and R. M. Hurst. 1995. Understanding physical inactivation processes: Combined preservation opportunities using heat, ultrasound and pressure. Int. J. Food Microbiol. 28: 197-219 https://doi.org/10.1016/0168-1605(95)00057-7
  7. Furukawa, S., N. Narisawa, T. Watanabe, T. Kawarai, K. Myozen, S. Okazaki, H. Ogihara, and M. Yamasaki. 2005. Formation of spore clumps during heat treatment increases the heat resistance of bacterial spores. Int. J. Food Microbiol. 102: 107-111 https://doi.org/10.1016/j.ijfoodmicro.2004.12.004
  8. Furukawa, S., S. Noma, M. Shimoda, and I. Hayakawa. 2002. Effect of initial concentration of bacterial suspensions on their inactivation by high hydrostatic pressure. Int. J. Food Sci. Technol. 37: 573-577 https://doi.org/10.1046/j.1365-2621.2002.00586.x
  9. Hauben, K. J. A., K. Bernaerts, and C. W. Michiels. 1998. Protective effect of calcium on inactivation of Escherichia coli by high hydrostatic pressure. J. Appl. Microbiol. 85: 678-684 https://doi.org/10.1111/j.1365-2672.1998.00577.x
  10. Janssen, F. W., A. J. Lund, and L. E. Anderson. 1958. Calorimetric assay for dipicolinic acid in bacterial spores. Science 127: 26-27 https://doi.org/10.1126/science.127.3288.26
  11. Kalchayanand, N., C. P. Dunne, A. Sikes, and B. Ray. 2004. Germination induction and inactivation of Clostridium spores at medium-range hydrostatic pressure treatment. Innov. Food Sci. Emerging Tech. 5: 277-283 https://doi.org/10.1016/j.ifset.2004.02.004
  12. Koshikawa, T., M. Yamazaki, M. Yoshimi, S. Ogawa, A. Yamada, K. Watabe, and M. Torii. 1989. Surface hydrophobicity of spores of Bacillus spores. J. Gen. Microbiol. 135: 2717-2722
  13. Lee, M.-J., D.-H. Bae, D.-H. Lee, K.-H. Jang, D.-H. Oh, and S.-D. Ha. 2006. Reducing of Bacillus cereus in cooked rice treated with sanitizers and disinfectants. J. Microbiol. Biotechnol. 16: 639-642
  14. Lee, S.-W. and S. J. Sim. 2006. Increased heat resistance of Geobacillus stearothermophilus spores heat-shocked during sporulation. J. Microbiol. Biotechnol. 16: 633-636
  15. Leuschner, R. G. K., A. C. Weaver, and P. J. Lillford. 1999. Rapid particle size distribution analysis of Bacillus spore suspensions. Colloids Surfaces B 13: 47-57 https://doi.org/10.1016/S0927-7765(98)00112-X
  16. Linton, R. H., W. H. Carter, M. D. Pierson, and C. R. Hackney. 1995. Use of a modified Gompertz equation to model nonlinear survival curves for Listeria monocytogenes Scott A. J. Food Prot. 58: 946-954 https://doi.org/10.4315/0362-028X-58.9.946
  17. Margosch, D., M. G. Gazle, M. A. Ehrmann, and R. F. Vogel. 2004. Pressure inactivation of Bacillus endospores. Appl. Environ. Microbiol. 70: 7321-7328 https://doi.org/10.1128/AEM.70.12.7321-7328.2004
  18. Oh, S. and M.-J. Moon. 2003. Inactivation of Bacillus cereus spores by high hydrostatic pressure at different temperatures. J. Food Prot. 66: 599-603 https://doi.org/10.4315/0362-028X-66.4.599
  19. Paidhungat, M., B. Setlow, W. B. Daniels, D. Hoover, E. Papafragkou, and P. Setlow. 2002. Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Appl. Environ. Microbiol. 68: 3172-3175 https://doi.org/10.1128/AEM.68.6.3172-3175.2002
  20. Paidhungat, M., B. Setlow, A. Driks, and P. Setlow. 2000. Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J. Appl. Bacteriol. 182: 5505- 5512 https://doi.org/10.1128/JB.182.19.5505-5512.2000
  21. Reddy, N. R., H. M. Solomon, R. C. Tetzloff, and E. J. Rhodehamel. 2003. Inactivation of Clostridium botulinum Type A spores by high-pressure processing at elevated temperature. J. Food Prot. 66: 1402-1407 https://doi.org/10.4315/0362-028X-66.8.1402
  22. Ritz, M., J. L. Tholozan, M. Federighi, and M. F. Pilet. 2002. Physiological damages of Listeria monocytogenes treated by high hydrostatic pressure. Int. J. Food Microbiol. 79: 47-53 https://doi.org/10.1016/S0168-1605(02)00178-2
  23. Rocken, W. and G. Spicher. 1993. Fadenziehende bakterien - vorkommen, bedeutung gegenmbnahmen. Getreide Mehl und Brot 47: 30-35
  24. Ruiz, P., M. J. Ocio, F. Cardona, A. Fernandez, M. Rodrigo, and A. Martinez. 2002. Nature of the inactivation curves of Bacillus pumilus spore heated using non-isothermal and isothermal treatments. J. Food Sci. 67: 776-779 https://doi.org/10.1111/j.1365-2621.2002.tb10675.x
  25. Sale, A. J. H., G. W. Gould, and W. A. Hamilton. 1970. Inactivation of bacterial spores by high hydrostatic pressure. J. Gen. Microbiol. 60: 323-334 https://doi.org/10.1099/00221287-60-3-323
  26. San Martin, M. F., G. V. Barbosa-Canovas, and B. G. Swanson. 2002. Food processing by high hydrostatic pressure. Crit. Rev. Food Sci. Nutr. 46: 627-645
  27. Serebryakova, E. V., I. V. Darmov, N. P. Medvedev, S. M. Alekseev, and S. I. Rybak. 2002. Evaluation of the hydrophobicity of bacterial cells by measuring their adherence to chloroform drops. Microbiology 71: 202-204 https://doi.org/10.1023/A:1015154406214
  28. Slieman, T. A. and W. L. Nicholson. 2001. Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation. Appl. Environ. Microbiol. 67: 1274-1279 https://doi.org/10.1128/AEM.67.3.1274-1279.2001
  29. Smelt, J. P. P. M., J. C. Hellemons, P. C. Wouters, and S. J. C. van Gerwen. 2002. Physiological and mathematical aspects in setting criteria for decontamination of foods by physical means. Int. J. Food Microbiol. 78: 57-77 https://doi.org/10.1016/S0168-1605(02)00242-8
  30. Sojka, B. and H. Ludwig. 1994. Pressure-induced germination and inactivation of Bacillus subtilis spores. Pharmazeutische Industrie 56: 660-663
  31. Stephens, P. J. 2005. Recovery of stressed bacteria. Culture 26: 5-8
  32. Warth, A. D., D. F. Ohye, W. G. Murrell, and D. Phil. 1963. The composition and structure of bacterial spores. J. Cell Biol. 16: 579-592 https://doi.org/10.1083/jcb.16.3.579
  33. Wiencek, K. M., N. A. Klapes, and P. M. Forgrding. 1990. Hydrophobicity of Bacillus and Clostridium spores. Appl. Environ. Microbiol. 56: 2600-2605
  34. Wuytack, E. Y., S. Boven, and C. W. Michiels. 1998. Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressure. Appl. Environ. Microbiol. 64: 3220-3224
  35. Wuytack, E. Y., J. Soons, F. Poschet, and C. W. Michiels. 2000. Comparative study of pressure- and nutrient-induced germination of Bacillus subtilis spores. Appl. Environ. Microbiol. 66: 257-261 https://doi.org/10.1128/AEM.66.1.257-261.2000
  36. Xiong, R., G. Xie, A. E. Edmondson, and M. A. Sheard. 1999. A mathematical model for bacterial inactivation. Int. J. Food Microbiol. 46: 45-55 https://doi.org/10.1016/S0168-1605(98)00172-X
  37. Yuste, J., M. Mor-Mur, M. Capellas, and R. Pla. 1999. Pressure- vs. heat-induced bacterial stress in cooked poultry sausages: A preliminary study. Lett. Appl. Microbiol. 29: 233-237 https://doi.org/10.1046/j.1365-2672.1999.00611.x