Humic Substances Act as Electron Acceptor and Redox Mediator for Microbial Dissimilatory Azoreduction by Shewanella decolorationis S12

  • Hong, Yi-Guo (South China Botanical Garden, Chinese Academy of Sciences) ;
  • Guo, Jun (Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology) ;
  • Xu, Zhi-Cheng (Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology) ;
  • Xu, Mei-Ying (Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology) ;
  • Sun, Guo-Ping (Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology)
  • Published : 2007.03.31

Abstract

The potential for humic substances to serve as terminal electron acceptors in microbial respiration and the effects of humic substances on microbial azoreduction were investigated. The dissimilatory azoreducing microorganism Shewanella decolorationis S12 was able to conserve energy to support growth from electron transport to humics coupled to the oxidation of various organic substances or $H_2$. Batch experiments suggested that when the concentration of anthraquinone-2-sulfonate (AQS), a humics analog, was lower than 3 mmol/l, azoreduction of strain S12 was accelerated under anaerobic condition. However, there was obvious inhibition to azoreduction when the concentration of the AQS was higher than 5 mmol/l. Another humics analog, anthraquinone-2-sulfonate (AQDS), could still prominently accelerate azoreduction, even when the concentration was up to 12 mmol/l, but the rate of acceleration gradually decreased with the increasing concentration of the AQDS. Toxic experiments revealed that AQS can inhibit growth of strain S12 if the concentration past a critical one, but AQDS had no effect on the metabolism and growth of strain S12 although the concentration was up to 20 mmol/l. These results demonstrated that a low concentration of humic substances not only could serve as the terminal electron acceptors for conserving energy for growth, but also act as redox mediator shuttling electrons for the anaerobic azoreduction by S. decolorationis S12. However, a high concentration of humic substances could inhibit the bacterial azoreduction, resulting on the one hand from the toxic effect on cell metabolism and growth, and on the other hand from competion with azo dyes for electrons as electron acceptor.

Keywords

References

  1. Brown, M. A. and S. C. DeVito. 1993. Predicting azo dye toxicity. Crit. Rev. Environ. Sci. Technol. 23: 249-324 https://doi.org/10.1080/10643389309388453
  2. Cervantes, F. J., F. A. M. de Bok, T. Duong-Dac, A. J. M. Stams, G. Lettinga, and J. A. Field. 2002. Reduction of humic substances by halorespiring, sulphate-reducing and nmethanogenic microorganisms. Environ. Microbiol. 4: 51- 57 https://doi.org/10.1046/j.1462-2920.2002.00258.x
  3. Cervantes, F. J., F. P. van der Zee, G. Lettinga, and J. A. Field. 2001. Enhanced decolourisation of acid orange 7 in a continuous UASB reactor with quinines as redox mediators. Water Sci. Technol. 44: 123-128
  4. Chang, J. S. and Y. C. Lin. 2000. Fed-batch bioreactor strategies for microbial decolorization of azo dye using a Pseudomonas luteola strain. Biotechnol. Prog. 16: 979-985 https://doi.org/10.1021/bp000116z
  5. Chung, K. T. and C. E. Cerniglia. 1992. Mutagenicity of azo dyes: Structure-activity relationships. Mutat. Res. 77: 201- 220
  6. Chung, K. T. and S. E. J. Stevens. 1993. Degradation of azo dyes by environmental microorganisms and helminths. Environ. Toxicol. Chem. 12: 2121-2132
  7. Coates, J. D., D. J. Ellis, E. Roden, K. Gaw, E. L. Blunt-Harris, and D. R. Lovley. 1998. Recovery of humics reducing bacteria from a diversity of sedimentary environments. Appl. Environ. Microbiol. 64: 1504-1509
  8. Coates, J. D., V. K. Bhupathiraju, L. A. Achenbach, M. J. Mclnerney, and D. R. Lovley. 2001. Geobacter hydrogenophilus. Geobacter chapellei and Geobacter grbicie, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int. J. Syst. Evol. Microbiol. 51: 581-588 https://doi.org/10.1099/00207713-51-2-581
  9. Dubin, P. and K. L. Wright. 1975. Reduction of azo food dyes in cultures of Proteus vulgaris. Xenobiotica 5: 563- 571 https://doi.org/10.3109/00498257509056126
  10. Field, J. A., F. J. Cervantes, F. P. Van der Zee, and G. Lettinga. 2000. Role of quinines in the biodegradation of priority pollutants: A review. Water Sci. Technol. 42: 215- 222
  11. Francis, C. A., A. Y. Obraztsova, and B. M. Tebo. 2000. Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl. Environ. Microbiol. 66: 543-548 https://doi.org/10.1128/AEM.66.2.543-548.2000
  12. Fultz, M. L. and R. A. Durst. 1982. Mediator compounds for the electrochemical study of biological redox systems. Anal. Chim. Acta 140: 1-18 https://doi.org/10.1016/S0003-2670(01)95447-9
  13. Haug, W., A. Schmid, B. Nortemann, D. C. Hempel, A. Stolz, and H.-J. Knackmuss. 1991. Mineralization of the sulfonated azo dye mortant yellow 3 by a 6-aminonaphthalene- 2-sulfonate-degrading bacterial consortium. Appl. Environ. Microbiol. 57: 3144-3149
  14. Hong, Y., X. Chen, J. Guo, Z. Xu, M. Xu, and G. Sun. 2006. Effects of electron donors and acceptors on anaerobic azo dyes reduction by Shewanella decolorationis S12. Appl. Microbiol. Biotechnol. published online, DOI 10.1007/s00253- 006-0657-2
  15. Khehra, M. S., H. S. Saini, D. K. Sharma, B. S. Chadha, and S. S. Chimni. 2006. Biodegradation of azo dye C. I. Acid Red 88 by an anoxic-aerobic sequential bioreactor. Dyes Pigments 7: 1-7 https://doi.org/10.1016/0143-7208(86)87001-2
  16. Kudlich, M., A. Keck, J. Klein, and A. Stolz. 1997. Localization of the enzyme system involved in the anaerobic degradation of azo dyes by Sphingomonas sp. BN6 and effect of artificial redox mediators on the rate of azo reduction. Appl. Environ. Microbiol. 63: 3691-3694
  17. Lovley, D. R. and J. D. Coates. 2000. Novel forms of anaerobic respiration of environmental relevance. Curr. Opin. Microbiol. 3: 252-256 https://doi.org/10.1016/S1369-5274(00)00085-0
  18. Lovley, D. R., J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, and J. C. Woodward. 1996. Humic substances as electron acceptors for microbial respiration. Nature 382: 441-448
  19. Lovley, D. R., J. L. Fraga, E. L. Blunt-Harris, L. A. Hayes, E. J. P. Phillips, and J. D. Coates. 1998. Humic substances as a mediator for microbially catalyzed metal reduction. Acta. Hydrochem. Hydrbiol. 26: 152-157 https://doi.org/10.1002/(SICI)1521-401X(199805)26:3<152::AID-AHEH152>3.0.CO;2-D
  20. Miller, T. L. and M. L. Wolin. 1974. A serum bottle modofication of the hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27: 985-987
  21. Newman, D. K. and R. Kolter. 2000. A role for excreted quinones in extracellular electron transfer. Nature 405: 94- 97 https://doi.org/10.1038/35011098
  22. O'Neill, C., A. Lopez, S. Esteves, F. R. Hawkes, D. L. Hawkes, and S. Wilcox. 2000. Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent. Appl. Microbiol. Biotechnol. 53: 249-254 https://doi.org/10.1007/s002530050016
  23. O'Neill, C., F. R. Hawkes, D. L. Hawkes, N. D. Lourenco, H. M. Pinheiro, and W. Delee. 1999. Colour in textile effluents - sources, measurement, discharge consents and simulation: A review. J. Chem. Technol. Biotechnol. 74: 1009-1018 https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-N
  24. O'Neill, C., F. R. Hawkes, D. L. Hawkes, S. Esteves, and S. J. Wilcox. 2000. Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Water. Res. 34: 2355-2361 https://doi.org/10.1016/S0043-1354(99)00395-4
  25. Padamavathy, S., S. Sandhya, K. Swaminathan, Y. V. Subrahmanyam, and S. N. Kaul. 2003. Comparison of decolorization of reactive azo dyes by Microorganisms isolated from various source. J. Environ. Sci. 15: 628-632
  26. Park, E. H., M. S. Jang, I. H. Cha, Y. L. Choi, Y. S. Cho, C. H. Kim, and Y. C. Lee. 2005. Decolorization of a sulfonated azo dye, congo red, by Staphylococcus sp. EY-3. J. Microbiol. Biotechnol. 15: 221-225
  27. Park, M. R., S. Lee, T.-H. Han, B.-T. Oh, J. H. Shim, and I. S. Kim. 2006. A new intermediate in the degradation of carbofuran by Sphingomonas sp. strain SB5. J. Microbiol. Biotechnol. 16: 1306-1310
  28. Rajaguru, P., K. Kalaiselvi, M. Palanivel, and V. Subburam. 2000. Biodegradation of azo dyes in a sequential anaerobicaerobic system. Appl. Microbiol. Biotechnol. 54: 268-273 https://doi.org/10.1007/s002530000322
  29. Rau, J., H.-J. Knackmuss, and A. Stolz. 2002. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ. Sci. Technol. 36: 1497- 1504 https://doi.org/10.1021/es010227+
  30. Scott, D. T., D. M. McKnight, E. L. Blunt-Harris, S. E. Kolesar, and D. R. Lovley. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics reducing microorganisms. Environ. Sci. Technol. 32: 2984-2989 https://doi.org/10.1021/es980272q
  31. Seshadri, S., P. L. Bishop, and A. M. Agha. 1994. Anaerobic/ aerobic treatment of selected azo dyes in wastewater. Waste. Manag. 14: 127-137 https://doi.org/10.1016/0956-053X(94)90005-1
  32. Slobodkin, A. I., T. P. Tourova, B. B. Kuznetsov, N. A. Kostrikina, N. A. Chernyh, and E. A. Bonch-Osmolovskaya. 1999. Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int. J. Syst. Bacteriol. 49: 1471-1478 https://doi.org/10.1099/00207713-49-4-1471
  33. Stevenson, F. J. 1994. Humus Chemistry: Genesis, Composition, Reactions. New York: Wiley
  34. Stolz, A. 2001. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 56: 69-80 https://doi.org/10.1007/s002530100686
  35. Tan, N., F. X. Prenafeta-Boldu, J. L. Opsteeg, G. Lettinga, and J. Field. 1999. Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures. Appl. Microbiol. Biotechnol. 51: 865-871 https://doi.org/10.1007/s002530051475
  36. Van der Zee, F. P., R. H. M. Bouwman, D. P. B. T. B. Strik, G. Lettinga, and J. A. Field. 2001. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnol. Bioeng. 75: 691- 701 https://doi.org/10.1002/bit.10073
  37. Wesenberg, D., I. Kyriakides, and S. N. Agathos. 2003. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187 https://doi.org/10.1016/j.biotechadv.2003.08.011
  38. Wolin, E. A., M. J. Wolin, and R. S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882- 2886
  39. Xu M., J. Guo, Y. Cen, X. Zhong, W. Cao, and G. Sun. 2005. Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from an activated-sludge of wastewater treatment plant. Int. J. Syst. Evol. Microbiol. 55: 363-368 https://doi.org/10.1099/ijs.0.63157-0