References
- Brown, M. A. and S. C. DeVito. 1993. Predicting azo dye toxicity. Crit. Rev. Environ. Sci. Technol. 23: 249-324 https://doi.org/10.1080/10643389309388453
- Cervantes, F. J., F. A. M. de Bok, T. Duong-Dac, A. J. M. Stams, G. Lettinga, and J. A. Field. 2002. Reduction of humic substances by halorespiring, sulphate-reducing and nmethanogenic microorganisms. Environ. Microbiol. 4: 51- 57 https://doi.org/10.1046/j.1462-2920.2002.00258.x
- Cervantes, F. J., F. P. van der Zee, G. Lettinga, and J. A. Field. 2001. Enhanced decolourisation of acid orange 7 in a continuous UASB reactor with quinines as redox mediators. Water Sci. Technol. 44: 123-128
- Chang, J. S. and Y. C. Lin. 2000. Fed-batch bioreactor strategies for microbial decolorization of azo dye using a Pseudomonas luteola strain. Biotechnol. Prog. 16: 979-985 https://doi.org/10.1021/bp000116z
- Chung, K. T. and C. E. Cerniglia. 1992. Mutagenicity of azo dyes: Structure-activity relationships. Mutat. Res. 77: 201- 220
- Chung, K. T. and S. E. J. Stevens. 1993. Degradation of azo dyes by environmental microorganisms and helminths. Environ. Toxicol. Chem. 12: 2121-2132
- Coates, J. D., D. J. Ellis, E. Roden, K. Gaw, E. L. Blunt-Harris, and D. R. Lovley. 1998. Recovery of humics reducing bacteria from a diversity of sedimentary environments. Appl. Environ. Microbiol. 64: 1504-1509
- Coates, J. D., V. K. Bhupathiraju, L. A. Achenbach, M. J. Mclnerney, and D. R. Lovley. 2001. Geobacter hydrogenophilus. Geobacter chapellei and Geobacter grbicie, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int. J. Syst. Evol. Microbiol. 51: 581-588 https://doi.org/10.1099/00207713-51-2-581
- Dubin, P. and K. L. Wright. 1975. Reduction of azo food dyes in cultures of Proteus vulgaris. Xenobiotica 5: 563- 571 https://doi.org/10.3109/00498257509056126
- Field, J. A., F. J. Cervantes, F. P. Van der Zee, and G. Lettinga. 2000. Role of quinines in the biodegradation of priority pollutants: A review. Water Sci. Technol. 42: 215- 222
- Francis, C. A., A. Y. Obraztsova, and B. M. Tebo. 2000. Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl. Environ. Microbiol. 66: 543-548 https://doi.org/10.1128/AEM.66.2.543-548.2000
- Fultz, M. L. and R. A. Durst. 1982. Mediator compounds for the electrochemical study of biological redox systems. Anal. Chim. Acta 140: 1-18 https://doi.org/10.1016/S0003-2670(01)95447-9
- Haug, W., A. Schmid, B. Nortemann, D. C. Hempel, A. Stolz, and H.-J. Knackmuss. 1991. Mineralization of the sulfonated azo dye mortant yellow 3 by a 6-aminonaphthalene- 2-sulfonate-degrading bacterial consortium. Appl. Environ. Microbiol. 57: 3144-3149
- Hong, Y., X. Chen, J. Guo, Z. Xu, M. Xu, and G. Sun. 2006. Effects of electron donors and acceptors on anaerobic azo dyes reduction by Shewanella decolorationis S12. Appl. Microbiol. Biotechnol. published online, DOI 10.1007/s00253- 006-0657-2
- Khehra, M. S., H. S. Saini, D. K. Sharma, B. S. Chadha, and S. S. Chimni. 2006. Biodegradation of azo dye C. I. Acid Red 88 by an anoxic-aerobic sequential bioreactor. Dyes Pigments 7: 1-7 https://doi.org/10.1016/0143-7208(86)87001-2
- Kudlich, M., A. Keck, J. Klein, and A. Stolz. 1997. Localization of the enzyme system involved in the anaerobic degradation of azo dyes by Sphingomonas sp. BN6 and effect of artificial redox mediators on the rate of azo reduction. Appl. Environ. Microbiol. 63: 3691-3694
- Lovley, D. R. and J. D. Coates. 2000. Novel forms of anaerobic respiration of environmental relevance. Curr. Opin. Microbiol. 3: 252-256 https://doi.org/10.1016/S1369-5274(00)00085-0
- Lovley, D. R., J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, and J. C. Woodward. 1996. Humic substances as electron acceptors for microbial respiration. Nature 382: 441-448
- Lovley, D. R., J. L. Fraga, E. L. Blunt-Harris, L. A. Hayes, E. J. P. Phillips, and J. D. Coates. 1998. Humic substances as a mediator for microbially catalyzed metal reduction. Acta. Hydrochem. Hydrbiol. 26: 152-157 https://doi.org/10.1002/(SICI)1521-401X(199805)26:3<152::AID-AHEH152>3.0.CO;2-D
- Miller, T. L. and M. L. Wolin. 1974. A serum bottle modofication of the hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27: 985-987
- Newman, D. K. and R. Kolter. 2000. A role for excreted quinones in extracellular electron transfer. Nature 405: 94- 97 https://doi.org/10.1038/35011098
- O'Neill, C., A. Lopez, S. Esteves, F. R. Hawkes, D. L. Hawkes, and S. Wilcox. 2000. Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent. Appl. Microbiol. Biotechnol. 53: 249-254 https://doi.org/10.1007/s002530050016
- O'Neill, C., F. R. Hawkes, D. L. Hawkes, N. D. Lourenco, H. M. Pinheiro, and W. Delee. 1999. Colour in textile effluents - sources, measurement, discharge consents and simulation: A review. J. Chem. Technol. Biotechnol. 74: 1009-1018 https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-N
- O'Neill, C., F. R. Hawkes, D. L. Hawkes, S. Esteves, and S. J. Wilcox. 2000. Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Water. Res. 34: 2355-2361 https://doi.org/10.1016/S0043-1354(99)00395-4
- Padamavathy, S., S. Sandhya, K. Swaminathan, Y. V. Subrahmanyam, and S. N. Kaul. 2003. Comparison of decolorization of reactive azo dyes by Microorganisms isolated from various source. J. Environ. Sci. 15: 628-632
- Park, E. H., M. S. Jang, I. H. Cha, Y. L. Choi, Y. S. Cho, C. H. Kim, and Y. C. Lee. 2005. Decolorization of a sulfonated azo dye, congo red, by Staphylococcus sp. EY-3. J. Microbiol. Biotechnol. 15: 221-225
- Park, M. R., S. Lee, T.-H. Han, B.-T. Oh, J. H. Shim, and I. S. Kim. 2006. A new intermediate in the degradation of carbofuran by Sphingomonas sp. strain SB5. J. Microbiol. Biotechnol. 16: 1306-1310
- Rajaguru, P., K. Kalaiselvi, M. Palanivel, and V. Subburam. 2000. Biodegradation of azo dyes in a sequential anaerobicaerobic system. Appl. Microbiol. Biotechnol. 54: 268-273 https://doi.org/10.1007/s002530000322
- Rau, J., H.-J. Knackmuss, and A. Stolz. 2002. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ. Sci. Technol. 36: 1497- 1504 https://doi.org/10.1021/es010227+
- Scott, D. T., D. M. McKnight, E. L. Blunt-Harris, S. E. Kolesar, and D. R. Lovley. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics reducing microorganisms. Environ. Sci. Technol. 32: 2984-2989 https://doi.org/10.1021/es980272q
- Seshadri, S., P. L. Bishop, and A. M. Agha. 1994. Anaerobic/ aerobic treatment of selected azo dyes in wastewater. Waste. Manag. 14: 127-137 https://doi.org/10.1016/0956-053X(94)90005-1
- Slobodkin, A. I., T. P. Tourova, B. B. Kuznetsov, N. A. Kostrikina, N. A. Chernyh, and E. A. Bonch-Osmolovskaya. 1999. Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int. J. Syst. Bacteriol. 49: 1471-1478 https://doi.org/10.1099/00207713-49-4-1471
- Stevenson, F. J. 1994. Humus Chemistry: Genesis, Composition, Reactions. New York: Wiley
- Stolz, A. 2001. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 56: 69-80 https://doi.org/10.1007/s002530100686
- Tan, N., F. X. Prenafeta-Boldu, J. L. Opsteeg, G. Lettinga, and J. Field. 1999. Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures. Appl. Microbiol. Biotechnol. 51: 865-871 https://doi.org/10.1007/s002530051475
- Van der Zee, F. P., R. H. M. Bouwman, D. P. B. T. B. Strik, G. Lettinga, and J. A. Field. 2001. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnol. Bioeng. 75: 691- 701 https://doi.org/10.1002/bit.10073
- Wesenberg, D., I. Kyriakides, and S. N. Agathos. 2003. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187 https://doi.org/10.1016/j.biotechadv.2003.08.011
- Wolin, E. A., M. J. Wolin, and R. S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882- 2886
- Xu M., J. Guo, Y. Cen, X. Zhong, W. Cao, and G. Sun. 2005. Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from an activated-sludge of wastewater treatment plant. Int. J. Syst. Evol. Microbiol. 55: 363-368 https://doi.org/10.1099/ijs.0.63157-0