Preparation of a Porous Chitosan/Fibroin-Hydroxyapatite Composite Matrix for Tissue Engineering

  • Kim, Hong-Sung (Department of Biomaterials Engineering, College of Natural Resources & Life Science / Joint Research Center of PNU-Fraunhofer IGB, Pusan National University) ;
  • Kim, Jong-Tae (Department of Biomaterials Engineering, College of Natural Resources & Life Science / Joint Research Center of PNU-Fraunhofer IGB, Pusan National University) ;
  • Jung, Young-Jin (Department of Biomaterials Engineering, College of Natural Resources & Life Science / Joint Research Center of PNU-Fraunhofer IGB, Pusan National University) ;
  • Ryu, Su-Chak (Department of Nanomaterials, College of Nano Science and Technology, Pusan National University) ;
  • Son, Hong-Joo (Department of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University) ;
  • Kim, Yong-Gyun (Department of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University)
  • 발행 : 2007.02.28

초록

Chitosan, fibroin, and hydroxyapatite are natural biopolymers and bioceramics that are biocompatible, biodegradable, and resorb able for biomedical applications. The highly porous, chitosan-based, bioceramic hybrid composite, chitosanlfibroin-hydroxyapatite composite, was prepared by a novel method using thermally induced phase separation. The composite had a porosity of more than 94% and exhibited two continuous and different morphologies: an irregularly isotropic pore structure on the surface and a regularly anisotropic multilayered structure in the interior. In addition, the composite was composed of an interconnected open pore structure with a pore size below a few hundred microns. The chemical composition, pore morphology, microstructure, fluid absorptivity, protein permeability, and mechanical strength were investigated according to the composition rate of bioceramics to biopolymers for use in tissue engineering. The incorporation of hydroxyapatite improved the fluid absorptivity, protein permeability, and tenacity of the composite while maintaining high porosity and a suitable microstructure.

키워드

참고문헌

  1. J. L. Drury and D. J. Mooney, Biomaterials, 24, 4337 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  2. G. Khang, M. S. Kim, S. H. Cho, I. Lee, J. M. Rhee, and H. B. Lee, Tissue Engineering and Regenerative Medicine, 1, 9 (2004)
  3. A. Steinbuchel and R. H. Marchessault, Biopolymers for Medical and Pharmaceutical Applications, Wiley-VCH, Weinheim, 2005
  4. F. J. Hua, T. G. Park, and D. S. Lee, Polymer, 44, 1911 (2003)
  5. J. Guan, K. L. Fujimoto, M. S. Sacks, and W. R. Wagner, Biomaterials, 26, 3961 (2005)
  6. H. -J. Jin, M. -O. Hwang, J. S. Yoon, K. H. Lee, I. -J. Chin, and M. -N. Kim, Macromol. Res., 13, 73 (2005)
  7. A. U. Daniels, K. P. Andriano, W. P. Smutz, M. K. O. Chang, and J. Heller, J. Appl. Biomater., 5, 51 (1994) https://doi.org/10.1002/jab.770050108
  8. L. Li, S. Ding, and C. Zhou, J. Appl. Polym. Sci., 91, 274 (2004)
  9. D. L. Ellis and I. V. Yannas, Biomaterials, 17, 291 (1996)
  10. F. Zhao, Y. Yin, W. W. Lu, J. C. Leong, W. Zhang, J. Zhang, M. Zhang, and K. Yao, Biomaterials, 23, 3227 (2002)
  11. A. Lahiji, A. Sohrabi, D. S. Hungerford, and C. G. Frondoza, J. Biomed. Mater. Res., 51, 586 (2000)
  12. P. V. Vandevord, H. W. T. Matthew, S. P. Desilva, L. Mayton, B. Wu, and P. H. Wooley, J. Biomed. Mater. Res., 58, 585 (2002)
  13. C. H. Kim, H. -S. Park, Y. J. Gin, Y. Son, S. -H. Lim, Y. J. Choi, K. -S. Park, and C. W. Park, Macromol. Res., 12, 367 (2004)
  14. H. Nishikawa, A. Ueno, S. Nishikawa, J. Kido, M. Ohishi, H. Inoue, and T. Nagata, J. Endodontics, 26, 169 (2000)
  15. S. Szuchet, K. Watanabe, and Y. Yamaguchi, Int. J. Dev. Neurosci., 18, 705 (2000) https://doi.org/10.1016/S0736-5748(00)00034-4
  16. J. K. Suh and H. W. Matthew, Biomaterials, 21, 2589 (2000)
  17. M. Ishihara, K. Nakanishi, K. Ono, M. Sato, M. Kikuchi, Y. Saito, H. Yura, T. Matsui, H. Hattori, M. Uenoyama, and A. Kurita, Biomaterials, 23, 833 (2002)
  18. G. Freddi, P. Monti, M. Nagura, Y. Gotoh, and M. Tsukada, J. Polym. Sci.; Part B: Polym. Phys., 35, 841 (1997)
  19. N. Minoura, S. Aiba, Y. Gotoh, M. Tsukada, and Y. Imai, J. Biomed. Mat. Res., 29, 1215 (1995)
  20. X. Chen, W. Li, and T. Yu, J. Polym. Sci.; Part B: Polym. Phys., 35, 2293 (1997)
  21. H. Kweon, H. C. Ha, I. C. Um, and Y. H. Park, J. Appl. Polym. Sci., 80, 928 (2001) https://doi.org/10.1002/1097-4628(20010404)80:1<1::AID-APP1067>3.0.CO;2-Z
  22. G. D. Kang, K. H. Lee, C. S. Ki, J. H. Nahm, and Y. H. Park, Macromol. Res., 12, 534 (2004)
  23. T. Kokubo, H. Kim, and M. Kawashita, Biomaterials, 24, 2161 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  24. J. M. Gomez-Vega, E. Saiz, A. P. Tomsia, G. W. Marshall, and S. J. Marshall, Biomaterials, 21, 105 (2000)
  25. V. M. Rusu, C. Ng, M. Wilke, B. Tiersch, P. Fratzl, and M. G. Peter, Biomaterials, 26, 5414 (2005)
  26. Y. Miyamoto, K. Ishikawa, M. Takechi, T. Toh, T. Yuasa, M. Nagayama, and K. Suzuki, Biomaterials, 19, 707 (1998)
  27. R. Murugan and S. Ramakrishna, Biomaterials, 25, 3829 (2004)
  28. C. Zahraoui and P. Sharrock, Bone, 25, 63 (1999)
  29. R. A. A. Muzzarelli, G. Biagini, A. DeBenedittis, P. Mengucci, G. Majni, and G. Tosi, Carbon. Polym., 45, 35 (2001) https://doi.org/10.1016/S0144-8617(00)00276-9
  30. P. X. Ma, B. Schloo, D. Mooney, and R. Langer, J. Biomed. Mater. Res., 29, 1587 (1995)
  31. E. Wintermantel, J. Mayer, J. Blum, K. L. Eckert, P. Luscher, and M. Mathey, Biomaterials, 17, 83 (1996)
  32. E. T. Baran, K. Tuzlakoglu, A. J. Salgado, and R. L. Reis, J. Mater. Sci., Mater. Med., 15, 161 (2004)
  33. C. Schugens, V. Maquet, C. Gradfils, R. Jerome, and P. Teyssie, J. Biomed. Mater. Res., 30, 449 (1996)
  34. L. L. Whinnery, W. R. Even, J. V. Beach, and D. A. Loy, J. Polym Sci., Polym. Chem., 34, 1623 (1996)
  35. D. K. Kim and H. S. Kim, Polymer(Korea), 29, 408 (2005)
  36. S. J. Park, K. Y. Lee, W. S. Ha, and S. Y. Park, J. Appl. Polym. Sci., 74, 2571 (1999)
  37. N. C. Braier and R. A. Jishi, J. Mol. Struct. (Theochem), 499, 51 (2000)
  38. I. Yamaguchi, S. Itoh, M. Suzuki, A. Osaka, and J. Tanaka, Biomaterials, 24, 3285 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  39. C. J. Brine, P. A. Sandford, and J. P. Zikakis, Advances in Chitin and Chitosan, Elsevier Applied Science, London, 1992
  40. P. X. Ma and R. Langer, in Polymers in Medicine and Pharmacy, Materials Research Society, Pittsburgh, 1995, pp 99-104
  41. Y. Zhang and M. Zhang, J. Biomed. Mater. Res., 55, 304 (2001) https://doi.org/10.1002/1097-4636(200104)55:1<1::AID-JBM10>3.0.CO;2-#
  42. N. Shanmugasundaram, P. Ravichandran, P. N. Reddy, N. Ramamurty, S. Pal, and K. P. Rao, Biomaterials, 22, 1943 (2001) https://doi.org/10.1016/S0142-9612(00)00074-0
  43. T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, J. Biomed. Mater. Res., 51, 475 (2000)
  44. G. S. Sailaja, S. Velayudhan, M. C. Sunny, K. Sreenivasan, H. K. Varma, and P. Ramesh, J. Mater. Sci., 38, 3653 (2003)